UNIVERSIDADE FEDERAL DO RIO GRANDE CENTRO DE CIÊNCIAS COMPUTACIONAIS PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO CURSO DE MESTRADO EM ENGENHARIA DE COMPUTAÇÃO

Relatório de Dissertação

Função de escore baseada em machine learning para docagem molecular proteína-ligante

Oscar Emilio Arrúa

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Computação da Universidade Federal do Rio Grande, como requisito parcial para a obtenção do grau de Mestre em Engenharia de Computação

Orientadora: Prof.^{*a*} Dr.^{*a*} Karina dos Santos Machado Co-orientadores: Prof. Dr. Adriano Velasquez Werhli Prof. Dr. Andrej Aderhold Ficha Catalográfica

A779f	Arrúa, Oscar Emilio. Função de escore baseada em <i>machine learning</i> para docagem molecular proteína-ligante / Oscar Emilio Arrúa. – 2020. 370 f.
	Dissertação (mestrado) – Universidade Federal do Rio Grande – FURG, Programa de Pós-Graduação em Computação, Rio Grande/RS, 2020. Orientadora: Dra. Karina dos Santos Machado. Coorientador: Dr. Adriano Velasquez Werhli. Coorientador: Dr. Andrej Aderhold.
	 Bioinformatica 2. Docagem Molecular 3. Função de Escore Aprendizado de Máquina 5. Seleção de Atributos 6. Otimização de Parâmetros I. Machado, Karina dos Santos II. Werhli, Adriano Velasquez III. Aderhold, Andrej IV. Título.
	CDU 004
Catalog	ação na Fonte: Bibliotecário José Paulo dos Santos CRB 10/2344

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO RIO GRANDE CENTRO DE CIÊNCIAS COMPUTACIONAIS PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO CURSO DE MESTRADO EM ENGENHARIA DE COMPUTAÇÃO

DISSERTAÇÃO DE MESTRADO

FUNÇÃO DE ESCORE BASEADA EM *MACHINE LEARNING* PARA DOCAGEM MOLECULAR PROTEÍNA-LIGANTE

Oscar Emilio Arrúa Arce

Banca examinadora:

Prof. Dr. Wandré Nunes de Pinho Veloso

Prof. Dr. Eduardo Nunes Borges

Profa. Dra. Karina dos Santos Machado Orientadora

Korina achec

Prof. Dr. Adriano Velasquez Werhli Coorientador

Prof. Dr. Andrej Aderhold Coorientador

Dedico...àqueles heróis anônimos, que das sombras fazem deste mundo un lugar mais habitável.

AGRADECIMENTOS

Agradeço imensamente à minha família e amigos pelas preocupações e apoios que me mostraram durante o curso do mestrado. Obrigado, sem vocês eu não teria confiança suficiente para avançar no meu objetivo.

Agradeço aos meus professores, colegas do mestrado, colegas do laboratório e especialmente aos meus oriendadores: Prof.^{*a*} Dr.^{*a*} Karina dos Santos Machado, Prof. Dr. Adriano Velasquez Werhli e Prof. Dr. Andrej Aderhold. Obrigado pela oportunidade de aprender e compartilhar minhas ideias.

Um agradecimento especial à minha colega de laboratório, Patrícia, por todo o apoio prestado e revisões feitas durante o meu projeto de dissertação.

Finalmente, gostaria de agradecer à Universidade Federal do Rio Grande e à Organização dos Estados Americanos por me aceitar como bolsista de seu programa de intercâmbio.

A sword wields no strength unless the hand that holds it has courage. — THE LEGEND OF ZELDA: TWILIGHT PRINCESS

RESUMO

ARRÚA, Oscar Emilio. **Função de escore baseada em machine learning para docagem molecular proteína-ligante**. 2020. 370 f. Dissertação (Mestrado) – Programa de Pós-Graduação em Computação. Universidade Federal do Rio Grande, Rio Grande.

No desenho de fármacos, as scoring functions ou funções de escore são úteis para prever as afinidades de ligação dos complexos proteína-ligante. O constante aumento dos dados bioquímicos e biofísicos, juntamente com o trabalho experimental, permitiu que as funções de escore baseadas em machine learning apresentassem resultados promissores. O objetivo deste trabalho foi desenvolver uma função de escore baseada em machine learning para docagem molecular proteína-ligante. A metodologia aplicada nesta dissertação foi elaborada a partir dos trabalhos relacionados disponíveis na literatura, dos quais foram extraídos informações sobre coleções de complexos proteína-ligante que são utilizados como conjunto de treinamento; atributos das proteínas, dos ligantes e informações geradas das interações entre eles utilizadas como descritores; métodos de machine learning utilizados para treinar modelos, incluindo técnicas de seleção de atributos e otimização de parâmetros; e conjuntos de testes utilizados para avaliar as funções de escore. Para compilar o conjunto de treinamento, foram estudados: PDBbind refined set, PDBbind general set, CSAR-NRC HiQ e Decoys CSAR-NRC HiQ. Como grupos de atributos foram vistos: descritores geométricos, descritores do SFCscore, descritores e escore do Auto-Dock Vina, descritores relacionados à área de superfície acessível ao solvente, descritores do DeltaVinaRF20, descritores relacionados à sequência de aminoácidos, descritores relacionados à estrutura secundária de as proteínas, atributos dos ligantes gerados com o PaDEL Descriptor, descritores de interação proteína-ligante utilizados no NNscore 2.0 e descritores 2D/3D gerados com RDKit. Como métodos machine learning foram comparados o Random Forest e o Gaussian Process, além do LASSO para calcular os pesos dos atributos e o GridSearchCV como técnica para otimizar os parâmetros. A função de escore proposta foi avaliada com o benchmark CASF-2016 em relação a quatro métricas: Scoring Power, Ranking Power, Docking Power e Screening Power.

No teste do *Scoring Power*, a função de escore proposta alcançou um coeficiente de correlação de *Pearson* entre as afinidades previstas e as afinidades medidas experimentalmente de 0.81 contra os 0.816 alcançados pela melhor função de escore no CASF-2016 (DeltaVinaRF20). No teste do *Ranking Power*, a função de escore proposta atingiu um coeficiente de correlação de *Spearman* entre a classificação, com base nos valores de afinidade previstos e os valores medidos experimentalmente de 0.66 contra os 0.75 atingidos pela melhor função de escore no CASF-2016 (DeltaVinaRF20). No teste do *Docking Power*, a função de escore proposta alcançou uma taxa de sucesso de 86% para identificar a melhor pose de união com RMSD abaixo de 2 Å da pose nativa, em comparação com 90.2% alcançados pela melhor função de escore no CASF-2016 (AutoDock Vina). No teste do *Docking Power* sem considerar a pose nativa, a função de escore proposta atingiu uma taxa de sucesso de 83.8% contra os 84.9% atingidos pela melhor função de escore no CASF-2016 (DeltaVinaRF20). No teste de *Forward Screening Power*, a função de escore proposta obteve uma taxa de sucesso de 26.5% para identificar ligantes ativos entre moléculas aleatórias para uma proteína alvo no top 1% da classificação, em comparação com 42.1% obtida pela melhor função de escore proposta alcançou uma taxa de sucesso de 18.5% para identificar proteínas-alvo potenciais para um ligante específico no top 1% da classificação, obtendo a melhor pontuação no CASF-2016.

Palavras-chave: Bioinformática, docagem molecular, função de escore, aprendizado de máquina, seleção de atributos, otimização de parâmetros.

ABSTRACT

ARRÚA, Oscar Emilio.

A machine learning scoring function for protein–ligand docking. 2020. 370 f. Dissertação (Mestrado) – Programa de Pós-Graduação em Computação. Universidade Federal do Rio Grande, Rio Grande.

In the field of drug design, scoring functions are useful for predicting the binding affinity of protein-ligand complexes. The machine learning approach is showing a promising performance as a result of the increasing amount of data regarding biochemical and biophysical processes, obtained from previous experiments. The aim of this work was to develop a scoring function based on machine learning method for protein-ligand molecular docking. The current methodology was designed from related works available in the literature, where the information about protein-ligand complexes that are used like training collection were obtained; features of proteins, features of ligands and interactions between them the are used as descriptors; machine learning methods that are to used to train models, including feature selection techniques and hyperparameters optimization; and test sets that are used to evaluate scoring functions. To compile the training set were studied: PDBbind refined set, PDBbind general set, CSAR-NRC HiQ and Decoys CSAR-NRC HiQ. As atributes set where seen: geometrical features, SFCscore features, AutoDock Vina features and score, solvent-accessible surface area features, DeltaVinaRF20 features, protein primary structure features, descriptors related to protein secundary structure, features from PaDEL Descriptor, NNScore 2.0 interactions features, Features 2D/3D from RDKit. Random Forest and Gaussian Process were compared as machine learning methods, in addition to LASSO to calculate the weights of the attributes and GridSearchCV as a technique to hyperparameters optimization. The proposed scoring function will be evaluated using the CASF-2016 benchmark, based on the following parameters: Scoring Power, Ranking Power, Docking Power and Screening Power.

For the Scoring Power test, the proposed scoring function achieves a Pearson correlation coefficient between predicted affinities and experimental measured affinities of 0.81 versus 0.816 achieved by the best scoring function in CASF-2016 (DeltaVinaRF20). For the Ranking Power, the proposed scoring function achieves a Spearman correlation coefficient between the ranks based on the predicted affinities values and the experimentally values measured of 0.66 versus 0.75 achieved by the best scoring function in CASF-2016 (DeltaVinaRF20). For the Docking Power test, the proposed scoring function has obtain a 86% success rate in identifying the top best-scored ligand binding pose below 2 Å root-mean-square deviation from the native pose compared to 90.2% achieved by the best scoring function in CASF-2016 (AutoDock Vina). For the Docking Power test without native pose, the proposed scoring function has obtain a success rate of 83.8% versus 84.9% achieved by the best scoring function in CASF-2016 (DeltaVinaRF20). For the Forward Screening Power test, the proposed scoring function has a got 26.5% success rate to identifying potential small-molecule ligands for a chosen target protein at the top 1% level versus 42.1% by the best scoring function in CASF-2016 (DeltaVinaRF20). For the Reverse Screening Power test, the proposed scoring function achieve a 18.5% success rate in identifying potential target proteins for a bioactive small-molecule compound at the top 1% level and was the best scoring function in CASF-2016.

Keywords: Bioinformatic, molecular docking, scoring function, machine learning, feature selection, hyperparameters optimization.

LISTA DE FIGURAS

Figura 1	O método de docagem molecular	
Figura 2	Cálculo da docagem molecular do complexo 1a1e utilizando Auto-	
	Dock Vina	29
Figura 3	Estruturas não vinculativos ou <i>decoys</i>	30
Figura 4	Metodologia a ser aplicada para a dissertação	43
Figura 5	Escala de valores para K_d	56
Figura 6	Fluxograma para calcular o Scoring Power	58
Figura 7	Scoring Power - Pearson's correlation coefficient	60
Figura 8	Fluxograma para calcular o Ranking Power	61
Figura 9	Fluxograma para calcular o <i>Docking Power</i>	65
Figura 10	Fluxograma para calcular o <i>Docking Power</i> (sem incluir a pose nativa)	66
Figura 11	Fluxograma para calcular o Forward Screening Power	69
Figura 12	Fluxograma para calcular o Reverse Screening Power	70
Figura 13	Comparativo entre três conjuntos de treinamento do Experimento 7, utilizando o termo de correção $\Delta p K_d$ como atributo-alvo	81
Figura 14	Comparativo entre três conjuntos de treinamento do Experimento 8, utilizando o valor experimental $-LogKd$ como atributo-alvo	82
Figura 15	Comparativo entre dois conjuntos de treinamento do Experimento 7, o primeiro, utilizando vários tipos de complexos, e o segundo, utili- zando só o PDBbind <i>refined</i> $set(\Delta pK_d)$	83
Figura 16	Comparativo entre dois conjuntos de treinamento do Experimento 8, o primeiro, utilizando vários tipos de complexos, e o segundo, utilizando só o PDBbind <i>refined</i> $set(-LogKd)$	83
Figura 17	Comparativo entre o termo de correção $\Delta p K_d$ e o valor experimental $-Log Kd$ utilizados como atributos-alvo	84
Figura 18	Comparativo entre três conjuntos de treinamento utilizando o <i>kernel</i> RBF	85
Figura 19	Comparativo entre três conjuntos de treinamento utilizando o <i>kernel</i> MATERN	85
Figura 20	Comparativo entre três conjuntos de treinamento utilizando o <i>kernel</i> RATIONAL_QUADRATIC	86
Figura 21	Comparativo entre os dois tipos de atributo-alvo utilizando o <i>kernel</i> RBF	86
Figura 22	Comparativo entre três conjuntos de treinamento utilizando o <i>kernel</i> RBF+WHITE	87

Figura 23	Comparativo entre três conjuntos de treinamento utilizando o <i>kernel</i> MATERN+WHITE		
Figura 24	Comparativo entre três conjuntos de treinamento utilizando o <i>kernel</i> RATIONAL_QUADRATIC+WHITE		
Figura 25	Comparativo entre os dois tipos de atributo-alvo utilizando o <i>kernel</i> RBF+WHITE		
Figura 26	Comparativo entre os métodos <i>Gaussian Process</i> e <i>Random Forest</i> utilizando atributos geométricos	. 89	
Figura 27	Comparativo entre os métodos <i>Gaussian Process</i> e <i>Random Forest</i> utilizando atributos do SFCscore	. 89	
Figura 28	Comparativo entre os métodos <i>Gaussian Process</i> e <i>Random Forest</i> utilizando atributos do DeltaVinaRF20 e o termo de correção ΔpK_d como atributo-alvo		
Figura 29	Comparativo entre os métodos <i>Gaussian Process</i> e <i>Random Forest</i> utilizando atributos do DeltaVinaRF20 e o valor experimental $-LoaKd$ como atributo-alvo	. 90	
Figura 30	Comparativo entre três conjuntos de características: atributos do Del- taVinaRF20; todos os atributos estudados sem incluir o escore do AutoDock Vina; e todos os atributos estudados, incluindo o escore		
Figura 31	do AutoDock Vina	. 92	
E: 00	o escore do AutoDock Vina)	. 93	
Figura 32	Pesos dos atributos calculados pelo LASSO (1-50)	. 94	
Figura 33	Pesos dos atributos calculados pelo LASSO (51-100)	. 95	
Figura 34	Pesos dos atributos calculados pelo LASSO (101-150)	. 96	
Figura 35	Pesos dos atributos calculados pelo LASSO (151-200)	. 97	
Figura 36	Pesos dos atributos calculados pelo LASSO (201-250)	. 98	
Figura 37	Comparativo entre três conjuntos de atributos (50, 250, 723), classi- ficados por seus pesos do mais alto para o mais baixo		
Figura 38	Evolução dos modelos <i>Random Forest</i> aplicando a metodologia pro- posta nesta dissertação	. 100	
Figura 39	Comparativo entre os modelos preditivos sem ajustar os parâmetros (Experimento 14) e com os parâmetros ajustados manualmente (Ex-	101	
Figura 40	Comparativo entre os modelos preditivos sem ajustar os parâmetros (Experimento 14) e com os parâmetros ajustados automáticamente	. 101	
Figura 41	(Experimento 19)	. 101 102	
Figura 47	Metodologia anlicada no Experimento 19	102	
Figura 43	Comparativo da função de escore proposta com outras funções de	. 103	
Eigung 44	escore do CASF-2016 no teste de <i>Scoring Power</i>	. 106	
Figura 44	Comparativo da função de escore proposta com outras funções de escore do CASF-2016 no teste de <i>Ranking Power</i>		
Figura 45	escore do CASF-2016 no teste de <i>Docking Power</i>	. 110	

Figura 46	Comparativo da função de escore proposta com outras funções de escore do CASF-2016 no teste de <i>Docking Power (without native pose)</i> 112	
Figura 47	Comparativo da função de escore proposta com outras funções de escore do CASF-2016 no teste de <i>Forward Screening Power</i>	
Figura 48	Comparativo da função de escore proposta com outras funções de escore do CASF-2016 no teste de <i>Reverse Screening Power</i>	
Figura 49 Comparativo do tempo de execução entre a função de escore prop e o DeltaVinaRF20 utilizando como conjunto de teste o PDE		
Figura 50	<i>core set</i>	

LISTA DE TABELAS

Tabela 1	Aplicações da docagem molecular	26
Tabela 2	Alguns algoritmos utilizados em busca para docagem molecular	28
Tabela 3	Alguns kernels (funções de covariância) utilizados no Gaussian Pro-	
	<i>cess</i>	36
Tabela 4	Resumo dos trabalhos relacionados	42
Tabela 5	Resumo das bases de dados de treinamento e teste	48
Tabela 6	Resumo dos conjuntos de treinamento dos experimentos	49
Tabela 7	Resumo dos descritores utilizados para treinamento e teste	53
Tabela 8	Scoring Power - Cálculo dos escores de ligação	58
Tabela 9	Scoring Power - Exclusão de outliers	59
Tabela 10	Scoring Power - Cálculo do Pearson's correlation coefficient	60
Tabela 11	Ranking Power - Cálculo dos escores de ligação para cada grupo de	
	complexos proteína-ligante	62
Tabela 12	Ranking Power - Classificação dos escores de ligação para cada grupo	
	de complexos proteína-ligante em cinco níveis de afinidade	62
Tabela 13	Ranking Power - Níveis de afinidade registrados experimentalmente .	63
Tabela 14Ranking Power - Níveis de afinidade previstos e registrados experi-		
	mentalmente	63
Tabela 15	Ranking Power - Cálculo do Spearman's rank correlation coefficient	
	para cada grupo de complexos proteína-ligante	64
Tabela 16	Docking Power - Cálculo dos escores de ligação para cada grupo de	
	complexos proteína-ligante	67
Tabela 17	Docking Power - Classificação dos escores de ligação para cada grupo	
	de complexos proteína-ligante e cruzados com seus valores de RMSD	67
Tabela 18	Docking Power - Cálculo das taxas de sucesso para cada grupo de	
	complexos proteína-ligante	68
Tabela 19	Forward Screening Power - Cálculo dos escores de ligação para cada	
	grupo de teste	71
Tabela 20	Forward Screening Power - Classificação dos escores de ligação para	
	cada grupo de teste	71
Tabela 21	Forward Screening Power - Ligantes conhecidos para cada proteína-	
	alvo	72
Tabela 22	Forward Screening Power - Cálculo das taxas de sucesso e Enhance-	
	<i>ment Factors</i> para cada grupo de complexos proteína-ligante	73
Tabela 23	Reverse Screening Power - Cálculo das taxas de sucesso para cada	
	grupo de complexos proteína-ligante	74

Tabela 24	Resumo dos experimentos 1 a 6	76
Tabela 25	Resumo dos experimentos 7 a 11	77
Tabela 26	Resumo dos experimentos 12 a 16	78
Tabela 27	Resumo dos experimentos 17 a 20	79
Tabela 28	Métricas do CASF-2016	80
Tabela 29	Experimento 19 - Conjuntos de Treinamento e Teste	104
Tabela 30	Experimento 19 - Descritores	104
Tabela 31	Experimento 19 - Configuração da seleção de atributos	105
Tabela 32	Experimento 19 - Configuração do GridSearchCV	105
Tabela 33	Experimento 19 - Configuração do modelo preditivo	105
Tabela 34	Experimento 19 - Comparação com outras funcões de escore do	
	CASF-2016 no teste do Scoring Power	107
Tabela 35	Experimento 19 - Comparação com outras funcões de escore do	
	CASF-2016 no teste do Ranking Power	109
Tabela 36	Experimento 19 - Comparação com outras funcões de escore do	
	CASF-2016 no teste do <i>Docking Power</i>	111
Tabela 37	Experimento 19 - Comparação com outras funcões de escore do	
	CASF-2016 no teste do <i>Docking Power</i> (without native pose) 1	113
Tabela 38	Experimento 19 - Comparação com outras funcões de escore do	
	CASF-2016 no teste do Forward Screening Power	115
Tabela 39	Experimento 19 - Comparação com outras funcões de escore do	
	CASF-2016 no teste do Reverse Screening Power	117

LISTA DE ABREVIATURAS E SIGLAS

- ADT AutoDockTools
- ANN Artificial Neural Network
- DL Deep Learning
- DNA Deoxyribonucleic Acid
- GA Genetic Algorithms
- GP Gaussian Process
- GPML Gaussian Processes for Machine Learning
- LML Log-marginal-likelihood
- MD Molecular Dynamics
- MC Monte Carlo
- ML Machine Learning
- QM Quantum Mechanics
- PDB Protein Data Bank
- RDD Rational Drug Design
- RF Random Forest
- RMSD Root Mean Square Deviation
- RMSE Root Mean Square Error
- RNA Ribonucleic Acid
- SASA Solvent-Accessible Surface Area
- SF Scoring Functions
- SVM Support Vector Machine

SUMÁRIO

1.1 Objetivos 24 1.1.1 Objetivos Geral 24 1.1.2 Objetivos Especifícos 24 1.2 Organização 24 2 FUNDAMENTAÇÃO TEÓRICA 25 2.1 Docagem molecular 25 2.2 Etapas da docagem molecular 27 2.2.1 Busca 27 2.2.2 Cálculo da afinidade de ligação ou escore 29 2.3 Aprendizado de máquina ou machine learning 34 2.3.1 Aprendizado supervisionado 34 2.3.2 Aprendizado supervisionado 34 2.3.4 Aprendizado supervisionado 34 2.4.2 Métodos de filtragem ou <i>filter methods</i> 37 2.4.1 Métodos de empacotado ou wrapper methods 37 3 TRABALHOS RELACIONADOS 38 4 METODOLOGIA 43 4.1.1 PDBbind 44 4.1.2 PDBbind 46 4.1.3 CSAR-NRC HiQ 46 4.1.4 Decoys CSAR-NRC HiQ 46 4.1.5 CSAR 2012	- 1	ITRODUÇÃO	22
1.1 Objetivos Geral 24 1.1.1 Objetivos Especificos 24 1.2 Organização 24 2 FUNDAMENTAÇÃO TEÓRICA 25 2.1 Docagem molecular 25 2.2 Etapas da docagem molecular 27 2.2.1 Busca 27 2.2.2 Cálculo da afinidade de ligação ou escore 29 2.3 Aprendizado supervisionado 34 2.3.1 Aprendizado supervisionado 34 2.3.2 Aprendizado supervisionado 34 2.3.4 Aprendizado supervisionado 34 2.3.2 Aprendizado supervisionado 34 2.3.4 Aprendizado supervisionado 34 2.4.2 Métodos de empacotado ou wrapper methods 37 3 TRABALHOS RELACIONADOS 38 4 METODOLOGIA 43 4.1.1 PDBbind 44 4.1.2 PDBbind 44 4.1.4 Decoys CSAR-NRC HiQ 46 4.1.4 Decoys CSAR-NRC HiQ 46 4.1.5 CSAR 2012 <t< td=""><td></td><td></td><td>22</td></t<>			22
1.1.1 Objetivos Geral 24 1.2 Organização 24 2 FUNDAMENTAÇÃO TEÓRICA 25 2.1 Docagem molecular 25 2.2 Etapas da docagem molecular 27 2.2.1 Busca 27 2.2.2 Cálculo da afinidade de ligação ou escore 29 2.3 Aprendizado de máquina ou machine learning 34 2.3.1 Aprendizado supervisionado 34 2.3.2 Aprendizado supervisionado 34 2.3 Aprendizado supervisionado 34 2.4.1 Métodos de filtragem ou filter methods 36 2.4.1 Métodos de empacotado ou wrapper methods 37 3 TRABALHOS RELACIONADOS 38 4 METODOLOGIA 43 4.1.1 PDBbind 44 4.1.2 PDBbind weak set 46 4.1.3 CSAR-NRC HiQ 46 4.1.4 Decoys CSAR-NRC HiQ 46 4.1.5 CSAR-NRC HiQ 46 4.1.6 PDBbind Benchmark 47 4.1.7 CASF-2013 </td <td>I.I</td> <td></td> <td>24</td>	I.I		24
1.1.2 Objetivos Especificos 24 1.2 Organização 24 2 FUNDAMENTAÇÃO TEÓRICA 25 2.1 Docagem molecular 25 2.2 Etapas da docagem molecular 27 2.2.1 Busca 27 2.2.2 Cálculo da afinidade de ligação ou escore 29 2.3 Aprendizado de máquina ou machine learning 34 2.3.1 Aprendizado supervisionado 34 2.3.2 Aprendizado supervisionado 34 2.3.3 Aprendizado supervisionado 34 2.3.2 Aprendizado supervisionado 34 2.3.4 Aprendizado supervisionado 34 2.4.1 Métodos de filtragem ou filter methods 37 2.4.2 Métodos de empacotado ou wrapper methods 37 3 TRABALHOS RELACIONADOS 38 4 METODOLOGIA 43 4.1.1 PDBbind 44 4.1.2 PDBbind weak set 46 4.1.3 CSAR-NRC HiQ 46 4.1.4 Decoys CSAR-NRC HiQ 46 4	1.1.1		24
1.2 Organização 24 2 FUNDAMENTAÇÃO TEÓRICA 25 2.1 Docagem molecular 25 2.2 Étapas da docagem molecular 27 2.2.1 Busca 27 2.2.2 Cálculo da afinidade de ligação ou escore 29 2.3 Aprendizado de máquina ou machine learning 34 2.3.1 Aprendizado supervisionado 34 2.3.2 Aprendizado supervisionado 34 2.3.2 Aprendizado supervisionado 34 2.3.2 Aprendizado supervisionado 34 2.3.2 Aprendizado supervisionado 34 2.4.3 Seleção de Atributos 36 2.4.1 Métodos de filtragem ou filter methods 37 2.4.2 Métodos de empacotado ou wrapper methods 37 3 TRABALHOS RELACIONADOS 38 4 METODOLOGIA 43 4.1.1 PDBbind 44 4.1.2 PDBbind 44 4.1.3 CSAR-NRC HiQ 46 4.1.4 Decoys CSAR-NRC HiQ 46 4.1.5	1.1.2		24
2 FUNDAMENTAÇÃO TEÓRICA 25 2.1 Docagem molecular 25 2.2 Etapas da docagem molecular 27 2.2.1 Busca 27 2.2.2 Cálculo da afinidade de ligação ou escore 29 2.3 Aprendizado de máquina ou machine learning 34 2.3.1 Aprendizado supervisionado 34 2.3.2 Aprendizado supervisionado 34 2.3.3 Aprendizado supervisionado 34 2.4 Seleção de Atributos 36 2.4.3 Métodos de filtragem ou filter methods 37 3 TRABALHOS RELACIONADOS 38 4 METODOLOGIA 43 4.1 PDBbind 44 4.1.1 PDBbind 44 4.1.2 PDBbind weak set 46 4.1.3 CSAR-NRC HiQ 46 4.1.4 Decoys CSAR-NRC HiQ 47 4.1.5 CSAR 2012 46 4.1.6 PDBbind Benchmark 47 4.1.7 CASF-2016 47 4.1.8 CASF-2016 47	1.2		24
2.1 Docagem molecular 25 2.2 Etapas da docagem molecular 27 2.2.1 Busca 27 2.2.2 Cálculo da afinidade de ligação ou escore 29 2.3 Aprendizado de máquina ou machine learning 34 2.3.1 Aprendizado supervisionado 34 2.3.2 Aprendizado supervisionado 34 2.3.4 Aprendizado supervisionado 34 2.4 Seleção de Atributos 36 2.4.1 Métodos de filtragem ou filter methods 37 3 TRABALHOS RELACIONADOS 38 4 METODOLOGIA 43 4.1 PDBbind 44 4.1.2 PDBbind meak set 46 4.1.3 CSAR-NRC HiQ 46 4.1.4 Decoys CSAR-NRC HiQ 46 4.1.5 CSAR 2012 46 4.1.6 PDBbind Benchmark 47 4.1.7 CASF-2013 47 4.1.8 CASF-2016 47 4.1.9 Resumo das bases de dados de treinamento e teste 48 42 Extração de de	2 F	UNDAMENTAÇÃO ΤΕÓRICA	25
2.2 Etapas da docagem molecular 27 2.2.1 Busca 27 2.2.2 Cálculo da afinidade de ligação ou escore 29 2.3 Aprendizado de máquina ou machine learning 34 2.3.1 Aprendizado supervisionado 34 2.3.2 Aprendizado supervisionado 34 2.3.4 Aprendizado supervisionado 34 2.3.2 Aprendizado supervisionado 34 2.4.3 Seleção de Atributos 36 2.4.4 Seleção de Atributos 37 2.4.2 Métodos de empacotado ou wrapper methods 37 3 TRABALHOS RELACIONADOS 38 4 METODOLOGIA 43 4.1.1 PDBbind 44 4.1.2 PDBbind weak set 46 4.1.3 CSAR-NRC HiQ 46 4.1.4 Decoys CSAR-NRC HiQ 46 4.1.5 CSAR 2012 46 4.1.6 PDBbind Benchmark 47 4.1.7 CASF-2013 47 4.1.8 CASF-2016 47 4.1.9 Resumo das bases de da	2.1	Docagem molecular	25
2.2.1 Busca 27 2.2.2 Cálculo da afinidade de ligação ou escore 29 2.3 Aprendizado de máquina ou machine learning 34 2.3.1 Aprendizado supervisionado 34 2.3.2 Aprendizado supervisionado 34 2.3.4 Aprendizado supervisionado 34 2.3.2 Aprendizado supervisionado 34 2.4 Seleção de Atributos 36 2.4.1 Métodos de filtragem ou filter methods 37 2.4.2 Métodos de empacotado ou wrapper methods 37 3 TRABALHOS RELACIONADOS 38 4 METODOLOGIA 43 4.1.1 PDBbind 44 4.1.2 PDBbind weak set 46 4.1.3 CSAR-NRC HiQ 46 4.1.4 Decoys CSAR-NRC HiQ 46 4.1.5 CSAR 2012 46 4.1.6 PDBbind Benchmark 47 4.1.7 CASF-2013 47 4.1.8 CASF-2016 47 4.1.9 Resumo das bases de dados de treinamento e teste 48 4.2<	2.2	Etapas da docagem molecular	27
2.2.2 Cálculo da afinidade de ligação ou escore 29 2.3 Aprendizado de máquina ou machine learning 34 2.3.1 Aprendizado supervisionado 34 2.3.2 Aprendizado supervisionado 34 2.3.2 Aprendizado supervisionado 34 2.3.2 Aprendizado supervisionado 34 2.4 Seleção de Atributos 36 2.4.1 Métodos de filtragem ou filter methods 37 2.4.2 Métodos de empacotado ou wrapper methods 37 3 TRABALHOS RELACIONADOS 38 4 METODOLOGIA 43 4.1 PDBbind 44 4.1.2 PDBbind weak set 46 4.1.3 CSAR-NRC HiQ 46 4.1.4 Decoys CSAR-NRC HiQ 46 4.1.5 CSAR 2012 46 4.1.6 PDBbind Benchmark 47 4.1.7 CASF-2013 47 4.1.8 CASF-2016 47 4.1.9 Resumo das bases de dados de treinamento e teste 48 4.2 Extração de descritores 49	2.2.1	Busca	27
2.3 Aprendizado de máquina ou machine learning 34 2.3.1 Aprendizado não supervisionado 34 2.3.2 Aprendizado supervisionado 34 2.3.2 Aprendizado supervisionado 34 2.4 Seleção de Atributos 36 2.4.1 Métodos de filtragem ou filter methods 37 2.4.2 Métodos de empacotado ou wrapper methods 37 3 TRABALHOS RELACIONADOS 38 4 METODOLOGIA 43 4.1 PDBbind 44 4.1.2 PDBbind weak set 46 4.1.3 CSAR-NRC HiQ 46 4.1.4 Decoys CSAR-NRC HiQ 46 4.1.5 CSAR 2012 46 4.1.6 PDBbind Benchmark 47 4.1.7 CASF-2013 47 4.1.8 CASF-2016 47 4.1.9 Resumo das bases de dados de treinamento e teste 48 4.2 Extração de descritores 49 4.2.1 Descritores Geométricos 49 4.2.2 Descritores SFCscore 50 4.2.4	2.2.2	Cálculo da afinidade de ligação ou escore	29
2.3.1Aprendizado não supervisionado342.3.2Aprendizado supervisionado342.4Seleção de Atributos362.4.1Métodos de filtragem ou <i>filter methods</i> 373TRABALHOS RELACIONADOS384METODOLOGIA434.1Bases de dados para treinamento e teste444.1.2PDBbind444.1.2PDBbind weak set464.1.3CSAR-NRC HiQ464.1.4Decoys CSAR-NRC HiQ464.1.5CSAR 2012464.1.6PDBbind Benchmark474.1.7CASF-2013474.1.8CASF-2016474.1.9Resumo das bases de dados de treinamento e teste484.2Extração de descritores494.2.1Descritores Geométricos494.2.2Descritores SFCscore504.2.4Descritores do DeltaVinaBE2051	2.3	Aprendizado de máquina ou <i>machine learning</i>	34
2.3.2 Aprendizado supervisionado 34 2.4 Seleção de Atributos 36 2.4.1 Métodos de filtragem ou <i>filter methods</i> 37 2.4.2 Métodos de empacotado ou <i>wrapper methods</i> 37 3 TRABALHOS RELACIONADOS 38 4 METODOLOGIA 43 4.1 Bases de dados para treinamento e teste 44 4.1.1 PDBbind 44 4.1.2 PDBbind <i>weak set</i> 46 4.1.3 CSAR-NRC HiQ 46 4.1.4 <i>Decoys</i> CSAR-NRC HiQ 46 4.1.5 CSAR 2012 46 4.1.6 PDBbind <i>Benchmark</i> 47 4.1.7 CASF-2013 47 4.1.8 CASF-2016 47 4.1.9 Resumo das bases de dados de treinamento e teste 48 4.2 Extração de descritores 49 4.2.1 Descritores Geométricos 49 4.2.2 Descritores SFCscore 50 4.2.3 Descritores do AutoDock Vina 50 4.2.4 Descritores do AutoDock Vina 50 4	2.3.1	Aprendizado não supervisionado	34
2.4 Seleção de Atributos 36 2.4.1 Métodos de filtragem ou <i>filter methods</i> 37 2.4.2 Métodos de empacotado ou <i>wrapper methods</i> 37 3 TRABALHOS RELACIONADOS 38 4 METODOLOGIA 43 4.1 Bases de dados para treinamento e teste 44 4.1.1 PDBbind 44 4.1.2 PDBbind <i>weak set</i> 46 4.1.3 CSAR-NRC HiQ 46 4.1.4 <i>Decoys</i> CSAR-NRC HiQ 46 4.1.5 CSAR 2012 46 4.1.6 PDBbind <i>Benchmark</i> 47 4.1.7 CASF-2013 47 4.1.8 CASF-2016 47 4.1.9 Resumo das bases de dados de treinamento e teste 48 4.2 Extração de descritores 49 4.2.1 Descritores Geométricos 49 4.2.2 Descritores SFCscore 50 4.2.3 Descritores relacionados à área de superfície acessível pelo solvente 50 4.2.4 Descritores relacionados à área de superfície acessível pelo solvente 50 <td>2.3.2</td> <td>Aprendizado supervisionado</td> <td>34</td>	2.3.2	Aprendizado supervisionado	34
2.4.1Métodos de filtragem ou <i>filter methods</i> 372.4.2Métodos de empacotado ou <i>wrapper methods</i> 373 TRABALHOS RELACIONADOS 384 METODOLOGIA 434.1 Bases de dados para treinamento e teste 444.1.1PDBbind444.1.2PDBbind <i>weak set</i> 464.1.3CSAR-NRC HiQ464.1.4 <i>Decoys</i> CSAR-NRC HiQ464.1.5CSAR 2012464.1.6PDBbind <i>Benchmark</i> 474.1.7CASF-2013474.1.8CASF-2016474.1.9Resumo das bases de dados de treinamento e teste48 4.2Extração de descritores 494.2.1Descritores Geométricos494.2.2Descritores SFCscore504.2.3Descritores relacionados à área de superfície acessível pelo solvente504.2.4Descritores do DeltaVinaRE2051	2.4	Seleção de Atributos	36
2.4.2Métodos de empacotado ou wrapper methods373TRABALHOS RELACIONADOS384METODOLOGIA434.1Bases de dados para treinamento e teste444.1.1PDBbind444.1.2PDBbind weak set464.1.3CSAR-NRC HiQ464.1.4Decoys CSAR-NRC HiQ464.1.5CSAR 2012464.1.6PDBbind Benchmark474.1.7CASF-2013474.1.8CASF-2016474.1.9Resumo das bases de dados de treinamento e teste484.2Extração de descritores494.2.1Descritores Geométricos494.2.2Descritores do AutoDock Vina504.2.4Descritores relacionados à área de superfície acessível pelo solvente504.2.5Descritores do DeltaVinaRE2051	2.4.1	Métodos de filtragem ou <i>filter methods</i>	37
3 TRABALHOS RELACIONADOS 38 4 METODOLOGIA 43 4.1 Bases de dados para treinamento e teste 44 4.1.1 PDBbind 44 4.1.2 PDBbind weak set 46 4.1.3 CSAR-NRC HiQ 46 4.1.4 Decoys CSAR-NRC HiQ 46 4.1.5 CSAR 2012 46 4.1.6 PDBbind Benchmark 47 4.1.7 CASF-2013 47 4.1.8 CASF-2016 47 4.1.9 Resumo das bases de dados de treinamento e teste 48 4.2 Extração de descritores 49 4.2.1 Descritores Geométricos 49 4.2.2 Descritores do AutoDock Vina 50 4.2.4 Descritores do AutoDock Vina 50 4.2.5 Descritores do DeltaVinaRE20 51	2.4.2	Métodos de empacotado ou <i>wrapper methods</i>	37
3 TRABALHOS RELACIONADOS 38 4 METODOLOGIA 43 4.1 Bases de dados para treinamento e teste 44 4.1.1 PDBbind 44 4.1.2 PDBbind weak set 46 4.1.3 CSAR-NRC HiQ 46 4.1.4 Decoys CSAR-NRC HiQ 46 4.1.5 CSAR 2012 46 4.1.6 PDBbind Benchmark 47 4.1.7 CASF-2013 47 4.1.8 CASF-2016 47 4.1.9 Resumo das bases de dados de treinamento e teste 48 4.2 Extração de descritores 49 4.2.1 Descritores Geométricos 49 4.2.2 Descritores SFCscore 50 4.2.3 Descritores relacionados à área de superfície acessível pelo solvente 50 4.2.4 Descritores relacionados à área de superfície acessível pelo solvente 50	22		01
4 METODOLOGIA 43 4.1 Bases de dados para treinamento e teste 44 4.1.1 PDBbind 44 4.1.2 PDBbind weak set 46 4.1.3 CSAR-NRC HiQ 46 4.1.4 Decoys CSAR-NRC HiQ 46 4.1.5 CSAR 2012 46 4.1.6 PDBbind Benchmark 47 4.1.7 CASF-2013 47 4.1.8 CASF-2016 47 4.1.9 Resumo das bases de dados de treinamento e teste 48 4.2 Extração de descritores 49 4.2.1 Descritores Geométricos 49 4.2.2 Descritores SFCscore 50 4.2.3 Descritores relacionados à área de superfície acessível pelo solvente 50 4.2.4 Descritores relacionados à área de superfície acessível pelo solvente 50	3 T	RABALHOS RELACIONADOS	38
4.1 Bases de dados para treinamento e teste 44 4.1.1 PDBbind 44 4.1.2 PDBbind weak set 46 4.1.3 CSAR-NRC HiQ 46 4.1.4 Decoys CSAR-NRC HiQ 46 4.1.5 CSAR 2012 46 4.1.6 PDBbind Benchmark 47 4.1.7 CASF-2013 47 4.1.8 CASF-2016 47 4.1.9 Resumo das bases de dados de treinamento e teste 48 4.2 Extração de descritores 49 4.2.1 Descritores Geométricos 49 4.2.3 Descritores of AutoDock Vina 50 4.2.4 Descritores relacionados à área de superfície acessível pelo solvente 50	4 M	IETODOLOGIA	43
4.1.1 PDBbind 44 4.1.2 PDBbind weak set 46 4.1.3 CSAR-NRC HiQ 46 4.1.4 Decoys CSAR-NRC HiQ 46 4.1.5 CSAR 2012 46 4.1.6 PDBbind Benchmark 47 4.1.7 CASF-2013 47 4.1.8 CASF-2016 47 4.1.9 Resumo das bases de dados de treinamento e teste 48 4.2 Extração de descritores 49 4.2.1 Descritores Geométricos 49 4.2.3 Descritores of AutoDock Vina 50 4.2.4 Descritores relacionados à área de superfície acessível pelo solvente 50 4.2.5 Descritores do DeltaVinaRE20 51	4.1	Bases de dados para treinamento e teste	44
4.1.2 PDBbind weak set 46 4.1.3 CSAR-NRC HiQ 46 4.1.4 Decoys CSAR-NRC HiQ 46 4.1.5 CSAR 2012 46 4.1.6 PDBbind Benchmark 47 4.1.7 CASF-2013 47 4.1.8 CASF-2016 47 4.1.9 Resumo das bases de dados de treinamento e teste 48 4.2 Extração de descritores 49 4.2.1 Descritores Geométricos 49 4.2.2 Descritores SFCscore 50 4.2.3 Descritores do AutoDock Vina 50 4.2.4 Descritores relacionados à área de superfície acessível pelo solvente 50	4.1.1	PDBbind	44
4.1.3 CSAR-NRC HiQ 46 4.1.4 Decoys CSAR-NRC HiQ 46 4.1.5 CSAR 2012 46 4.1.6 PDBbind Benchmark 47 4.1.7 CASF-2013 47 4.1.8 CASF-2016 47 4.1.9 Resumo das bases de dados de treinamento e teste 48 4.2 Extração de descritores 49 4.2.1 Descritores Geométricos 49 4.2.2 Descritores SFCscore 50 4.2.3 Descritores do AutoDock Vina 50 4.2.4 Descritores relacionados à área de superfície acessível pelo solvente 50 4.2.5 Descritores do DeltaVinaRE20 51	4.1.2	PDBbind weak set	46
4.1.4 Decoys CSAR-NRC HiQ 46 4.1.5 CSAR 2012 46 4.1.6 PDBbind Benchmark 47 4.1.7 CASF-2013 47 4.1.8 CASF-2016 47 4.1.9 Resumo das bases de dados de treinamento e teste 48 4.2 Extração de descritores 49 4.2.1 Descritores Geométricos 49 4.2.2 Descritores SFCscore 50 4.2.3 Descritores relacionados à área de superfície acessível pelo solvente 50 4.2.4 Descritores do DeltaVinaRE20 51	4.1.3	CSAR-NRC HiO	46
4.1.5CSAR 2012464.1.6PDBbind Benchmark474.1.7CASF-2013474.1.8CASF-2016474.1.9Resumo das bases de dados de treinamento e teste484.2Extração de descritores494.2.1Descritores Geométricos494.2.2Descritores SFCscore504.2.3Descritores do AutoDock Vina504.2.4Descritores relacionados à área de superfície acessível pelo solvente504.2.5Descritores do DeltaVinaRE2051	4.1.4	Decovs CSAR-NRC HiO	46
4.1.6PDBbind Benchmark474.1.7CASF-2013474.1.8CASF-2016474.1.9Resumo das bases de dados de treinamento e teste48 4.2Extração de descritores 494.2.1Descritores Geométricos494.2.2Descritores SFCscore504.2.3Descritores do AutoDock Vina504.2.4Descritores relacionados à área de superfície acessível pelo solvente504.2.5Descritores do DeltaVinaRE2051	4.1.5	CSAR 2012	46
4.1.7CASF-2013474.1.8CASF-2016474.1.9Resumo das bases de dados de treinamento e teste48 4.2 Extração de descritores494.2.1Descritores Geométricos494.2.2Descritores SFCscore504.2.3Descritores do AutoDock Vina504.2.4Descritores relacionados à área de superfície acessível pelo solvente504.2.5Descritores do DeltaVinaRE2051	4.1.6	PDBbind <i>Benchmark</i>	47
4.1.8CASF-2016474.1.9Resumo das bases de dados de treinamento e teste48 4.2 Extração de descritores494.2.1Descritores Geométricos494.2.2Descritores SFCscore504.2.3Descritores do AutoDock Vina504.2.4Descritores relacionados à área de superfície acessível pelo solvente504.2.5Descritores do DeltaVinaRE2051	4.1.7	CASF-2013	47
4.1.9Resumo das bases de dados de treinamento e teste4.1.14.2Extração de descritores494.2.1Descritores Geométricos494.2.2Descritores SFCscore504.2.3Descritores do AutoDock Vina504.2.4Descritores relacionados à área de superfície acessível pelo solvente504.2.5Descritores do DeltaVinaRE2051	4.1.8	CASF-2016	47
4.2 Extração de descritores 49 4.2.1 Descritores Geométricos 49 4.2.2 Descritores SFCscore 50 4.2.3 Descritores do AutoDock Vina 50 4.2.4 Descritores relacionados à área de superfície acessível pelo solvente 50 4.2.5 Descritores do DeltaVinaRE20 51	4.1.9	Resumo das bases de dados de treinamento e teste	48
4.2.1 Descritores Geométricos 49 4.2.2 Descritores SFCscore 50 4.2.3 Descritores do AutoDock Vina 50 4.2.4 Descritores relacionados à área de superfície acessível pelo solvente 50 4.2.5 Descritores do DeltaVinaRE20 51	4.2	Extração de descritores	49
4.2.2 Descritores SFCscore 50 4.2.3 Descritores do AutoDock Vina 50 4.2.4 Descritores relacionados à área de superfície acessível pelo solvente 50 4.2.5 Descritores do DeltaVinaRE20 51	4.2.1	Descritores Geométricos	49
 4.2.3 Descritores do AutoDock Vina	4.2.2	Descritores SFCscore	50
 4.2.4 Descritores do DeltaVinaRE20 51 	4.2.3	Descritores do AutoDock Vina	50
4.2.5 Descritores do DeltaVinaRE20 51	4.2.4	Descritores relacionados à área de superfície acessível pelo solvente	50
$\tau_{i}\omega_{i}$ = Describing up Dena vinani ω_{i} , \ldots	4.2.5	Descritores do DeltaVinaRF20	51

4.2.6	Escore do AutoDock Vina	51
4.2.7	Descritores relacionados à sequência de aminoácidos	51
4.2.8	Descritores relacionados à estrutura secundária das proteínas	51
4.2.9	PaDEL Descritores	52
4.2.10	Descritores BINANA (BINding ANAlyzer)	52
4.2.11	Descritores gerados com RDKit	52
4.2.12	Resumo dos descritores utilizados para treinamento e teste	52
4.3	Geração das funções de escore baseadas em <i>machine learning</i>	53
431	Seleção de Atributos	54
432	Otimização de Parâmetros	55
132		55
4.3.3		55
4.4	Avanaçau	57
5 RE	ESULTADOS	75
5.1	Тетро de execução	118
	· · · · · · · · · · · · · · · · · · ·	
6 CC	DNCLUSOES	120
7 TC		100
/ 16		122
REFE	RÊNCIAS	123
	,	
ANEX	O A LISTADO DE CARACTERISTICAS	140
A	Descritores SFCscore	141
B	Descritores relacionados à área de superfície acessível pelo solvente	142
C	Descritores do DeltaVinaRF20	143
D	Descritores relacionados à sequência de aminoácidos	144
E	Descritores relacionados à estrutura secundária das proteínas	145
F	PaDEL Descritores	146
G	Descritores BINANA (BINding ANAlyzer)	147
H	Descritores gerados com RDKit	148
ANEX	O B EXPERIMENTOS	149
A	Experimento Nro. 1	150
A.1	Metodologia Aplicada	150
A.2	Conjuntos de Treinamento e Teste	151
A.3	Descritores	151
A.4	Atributo Alvo	151
A.5	Modelos Preditivos	151
A.6	Resultados	152
B	Experimento Nro. 2	157
B.1	Metodologia Aplicada	157
B.2	Conjuntos de Treinamento e Teste	158
B.3	Descritores	158
B.4	Atributo Alvo	158
B.5	Modelos Preditivos	158
B.6	Resultados	159
C	Experimento Nro. 3	161
\tilde{C} 1	Metodologia Aplicada	161
C_{2}	Conjuntos de Treinamento e Teste	162

C.3	Descritores	2
C.4	Atributo Alvo	2
C.5	Modelos Preditivos	3
C.6	Resultados	4
D	Experimento Nro. 4	5
D.1	Metodologia Aplicada	5
D.2	Conjuntos de Treinamento e Teste	7
D.3	Descritores	7
D.4	Atributo Alvo	7
D.5	Modelos Preditivos	8
D.6	Resultados	9
Е	Experimento Nro. 5	1
E.1	Metodologia Aplicada	1
E.2	Conjuntos de Treinamento e Teste	2
E.3	Descritores 172	2
E.4	Atributo Alvo	2
E 5	Modelos Preditivos	2
E.6	Resultados 172	4
F.	Experimento Nro. 6	2
F1	Metodologia Anlicada	8
F2	Conjuntos de Treinamento e Teste	, с
F3	Descritores 17	ģ
F4	Atributo Alvo	ģ
F 5	Modelos Preditivos	ń
F6	Resultados 18	1
G	Experimento Nro 7	2
G1	Metodologia Aplicada	z
G.1	Conjuntos de Treinamento e Teste	1
G.3	Descritores 182	1
G.3	Atributo Alvo 18/	т 1
G.5	Modelos Preditivos	т 1
G.5	Resultados	т 5
О.0 Н	Experimenta Nro 8 10 [°]	, 7
H 1	Metodologia Aplicada	, 7
н. н.2	Conjuntos de Treinamento e Teste	2
Н3	Descritores 199	2
н.5 Н 4	Atributo Alvo	2
н. т н 5	Modelo Preditivo	2
н.5	Resultados 100	, а
II.0 I	Experimenta Nro 9 21 ⁷	1
т 1	Metodologia Aplicada 21	1
1.1	Conjuntos de Treinamento e Teste 21	1 2
I.2	Descritores 212	2
I.J	Atributo Alvo 21	2
1. 1	Modelos Preditivos 21	-)
1.5 I 6	Resultados 212	ב ג
I	Experimento Nro 10 224	5
յ I 1	Metodologia Aplicada 224	5
3.1		1

J.2	Conjuntos de Treinamento e Teste	
J.3	Descritores	
J.4	Atributo Alvo	
J.5	Modelos Preditivos	
J.6	Resultados	
K	Experimento Nro. 11	
K.1	Metodologia Aplicada	
K.2	Conjuntos de Treinamento e Teste	
K.3	Descritores	
K.4	Atributo Alvo	
K.5	Modelos Preditivos	
K.6	Resultados	
L	Experimento Nro. 12	
L.1	Metodologia Aplicada	
L.2	Conjuntos de Treinamento e Teste	
L.3	Descritores	
L.4	Atributo Alvo	
L.5	Modelos Preditivos	
L.6	Resultados	
\mathbf{M}	Experimento Nro. 13	
M .1	Metodologia Aplicada	
M.2	Conjuntos de Treinamento e Teste	
M.3	Descritores	
M.4	Atributo Alvo	
M.5	Modelos Preditivos	
M.6	Resultados	
Ν	Experimento Nro. 14	
N.1	Metodologia Aplicada	
N.2	Conjuntos de Treinamento e Teste	
N.3	Descritores	
N.4	Atributo Alvo	
N.5	Seleção de Atributos	
N.6	Modelos Preditivos	
N.7	Resultados	
0	Experimento Nro. 15	
0.1	Metodologia Aplicada	
O.2	Conjuntos de Treinamento e Teste	
O.3	Descritores	
O.4	Atributo Alvo	
O.5	Seleção de Atributos	
0.6	Modelos Preditivos	
O.7	Resultados	
Р	Experimento Nro. 16	
P.1	Metodologia Aplicada	
P.2	Conjuntos de Treinamento e Teste	
P.3	Descritores	
P.4	Atributo Alvo	
P.5	Seleção de Atributos	
	-	

P.6	Modelo Preditivo
P.7	Resultados
Q	Experimento Nro. 17
Q.1	Metodologia Aplicada
Q.2	Conjuntos de Treinamento e Teste
Q.3	Descritores
Q.4	Atributo Alvo
Q.5	Seleção de Atributos
Q.6	Modelo Preditivo
Q.7	Resultados
R	Experimento Nro. 18
R .1	Metodologia Aplicada
R.2	Conjuntos de Treinamento e Teste
R.3	Descritores
R.4	Atributo Alvo
R.5	Seleção de Atributos
R.6	Modelos Preditivos
R .7	Resultados
S	Experimento Nro. 19
Т	Experimento Nro. 20
T.1	Metodologia Aplicada
T.2	Conjuntos de Treinamento e Teste
T.3	Descritores
T.4	Atributo Alvo
T.5	Otimização de parâmetros
T.6	Modelo Preditivo
T.7	Resultados
	(O A PESOS DOS ATRIBUTOS CALCULADOS PELO LASSO 369

1 INTRODUÇÃO

A descoberta de novos fármacos está relacionada a inovações científicas e tecnológicas. Os avanços expressivos nas linhas de pesquisa de química e biologia possibilitaram a criação de novos medicamentos com formulações mais eficientes. Segundo LOMBARDINO; LOWE III (2004) o desenvolvimento de um novo fármaco é composto por três fases: na fase I é descoberto um novo composto com atividade terapêutica; na fase II, é realizado um estudo pré-clínico, composto por duas tarefas, testes *in vitro* para qualificar as propriedades biológicas das moléculas obtidas e testes *in vivo* em animais para avaliar os efeitos farmacocinéticos; finalmente, na fase III, são realizados estudos clínicos em humanos, composto por quatro outras fases (HULLEY, 2007).

Apesar do sucesso dos experimentos *in vitro* que produzem resultados próximos da realidade, comparativamente às demais, essa fase é mais dependiosa e mais demorada (VIANNA; AZEVEDO, 2012). Além disso, tem-se o fato de que, a cada ano, milhões de animais são usados para experimentos *in vivo*, uma realidade já debatida há muito tempo pela dor, angústia e morte dos animais (CARBONE, 2011). Existem outras desvantagens, dentre estas, os aspectos relacionados com os desequilíbrios éticos, quanto ao riscos que a exposição aos medicamentos em fases de teste podem causar. Devido a estes fatores, exige-se protocolos muito bem elaborados, com elevado custo e mão de obra qualificada, levando a processos longos e bastante onerosos. (DOKE; DHAWALE, 2015).

Outro ponto importante a mencionar, é que o processo completo de desenvolvimento de um novo fármaco pode ser longo e custoso. Toda sua elaboração dura cerca de doze anos, com uma probabilidade muito pequena de sucesso (MOHS; GREIG, 2017; DICKSON; GAGNON, 2004). De acordo com um estudo realizado por CALIXTO; SI-QUEIRA JUNIOR (2008) sobre o desenvolvimento de medicamentos no Brasil, de cada 30.000 moléculas sintetizadas, 20.000 (66,7%) entram na fase de estudos pré-clínicos, 200 (0,67%) entram na fase I dos estudos clínicos, 40 (0,13%) passam para a fase II, 12 (0,04%) entram na fase III, somente nove (0,027%) são aprovadas pelos órgãos regulatórios e apenas um fármaco aprovado (0,003%) é incluído nos protocolos terapêuticos.

A integração de etapas *in silico* no desenvolvimento de fármacos apresenta um crescimento considerável nas últimas décadas, sendo impulsionada pela disponibilidade de informações e estratégias de análise de dados. A abordagem *in silico* tem demonstrando sua capacidade de gerar previsões confiáveis, bem como novos conhecimentos sobre as ações das drogas e até sobre os mecanismos subjacentes aos seus efeitos colaterais (PIÑERO; FURLONG; SANZ, 2018). Esta etapa de simulação, já incorporada no desenvolvimento e descoberta de um novo fármaco, busca otimizar todo o processo e reduzir custos, aplicando-o antes dos experimentos *in vitro* e *in vivo*, um processo definido por KUNTZ (1992) como Desenho Racional de Fármacos (do inglês *Rational Drug Design*, RDD).

No RDD, a *molecular docking* ou docagem molecular é a etapa mais importante. Este método é usado para predizer a melhor pose/conformação de um ligante no sítio de ligação de um receptor, onde o receptor é geralmente uma proteína ou uma molécula de ácido nucleico e o ligante é uma molécula pequena; e para estimar a energia de interação ou afinidade de ligação entre esse complexo. (LYBRAND, 1995).

Com base na utilização desse método computacional, percebe-se que a compreensão de ferramentas de desenho computacional de fármacos, especialmente dos algoritmos de docagem molecular, podem não só reduzir o custo e o tempo gasto no processo de desenvolvimento de novos fármacos, mas também, auxiliar nos processos de modificação molecular, visando a obtenção de moléculas ainda mais potentes no combate a inúmeras doenças (GRINTER; ZOU, 2014).

Atualmente, há mais de 60 ferramentas de docagem molecular desenvolvidas nas últimas duas décadas (PAGADALA; SYED; TUSZYNSKI, 2017). Embora as ferramentas se diferem nas estratégias que utilizam, a docagem molecular ainda pode ser separada em duas etapas.. Na primeira etapa, conhecida como amostragem, diferentes posições e conformações do ligante no sítio de ligação são propostas; e na segunda etapa, os complexos são qualificados de acordo com sua afinidade de ligação por uma função de escore ou *scoring function* (ONODERA; SATOU; HIROTA, 2007).

Desde os primeiros programas para docagem molecular até hoje, uma grande variedade de funções de escore foram desenvolvidas. Existem algumas abordagens de funções de escore que tentam codificar a física sofisticada da interação proteína-ligante através de teorias de alto nível, porém, até o momento, por meio de avaliações feitas a essas funções, ainda não foram alcançados bons resultados (LI et al., 2014; SU et al., 2018). Em vez disso, por meio de aproximações, visam atingir um equilíbrio entre velocidade de execução e precisão (KITCHEN et al., 2004; SU et al., 2018). De acordo com LIU; WANG (2015) uma forma de classificar as funções de escore é por meio de quatro categorias: *physics-based*, que utiliza os valores dos campos de força disponíveis para calcular as interações diretas; *empirical*, que calcula a função *fitness* da ligação proteína-ligante através dos valores de seus termos individuais que representam um fator de energia da interação; *knowledge-based*, que somam os potenciais estatísticos par-a-par da interação proteína-ligante, esses valores são calculados a partir de uma função de escore derivada da análise de estruturas conhecidas; *machine-learning* (ML), que usa descritores (que podem ser propriedades do ligante, proteína e da interação) para treinar métodos de aprendizado de máquina e, assim, obter modelos estatísticos que calculam as interações proteínaligante (LIU; WANG, 2015).

Na descoberta de fármacos, os métodos baseados em ML são de interesse especial (AIN et al., 2015). Este paradigma demonstrou que é possível melhorar as predições feitas por funções de escore clássicas (*physics-based*, *empirical* e *knowledge-based*) (KIN-NINGS et al., 2011). Além disso, permite prever a afinidade da ligação através de uma grande variedade de atributos obtidos a partir da interação de ligantes de proteínas, que podem ser geométricas (DENG; CHUAQUI; SINGH, 2004), fundamentais (KUNDU; PAUL; BANERJEE, 2018), farmacológicas (LAVECCHIA, 2015), etc.

1.1 Objetivos

1.1.1 Objetivo Geral

Desenvolver funções de escore baseadas em *machine learning* para avaliar interações proteína-ligante.

1.1.2 Objetivos Especifícos

- Obter e organizar conjuntos de complexos proteínas-ligantes obtidos de fontes confiáveis que serão usados para treinar modelos preditivos.
- Calcular diferentes tipos de atributos de proteínas, ligantes e da interação entre eles para posteriormente serem usados como entrada dos modelos preditivos.
- Construir modelos preditivos usando métodos de aprendizado de máquina que serão a base das funções de escore.
- Avaliar os modelos preditivos propostos utilizando bases de dados de referência.

1.2 Organização

No Capítulo 2, é apresentada a fundamentação teórica. O Capítulo 3, são descritos os trabalhos relacionados que influenciaram o presente projeto. No Capítulo 4, os conjuntos de dados, o metodologia e a técnica de avaliação são detalhadas. No Capítulo 5, são discutidos os resultados obtidos nos experimentos. Finalmente, no Capítulo 6, são apresentados as conclusões obtidas e alguns trabalhos futuros.

No Apêndice A, os descritores gerados a partir de algumas ferramentas utilizadas na presente dissertação estão listados. No Apêndice B, apresenta os resultados de todos os experimentos realizados. No Apêndice C, são listados os pesos dos atributos calculados pelo LASSO.

2 FUNDAMENTAÇÃO TEÓRICA

Neste Capítulo, são apresentados os conceitos necessários para o entendimento desta dissertação de mestrado. Na Seção 2.1, é descrito o processo de docagem molecular, Na Seção 2.2, são explicados os dois tipos de algoritmos da docagem molecular: busca e função de escore. Além disso, na Seção 2.3 e na Seção 2.4, são detalhados alguns métodos de *machine learning* que podem ser utilizados para treinar as funções de escore e a técnica de seleção de atributos utilizado para melhorar os modelos preditivos.

2.1 Docagem molecular

A docagem molecular tornou-se uma ferramenta cada vez mais importante para descobrir novos medicamentos (MENG et al., 2011). Ela pode ser utilizada para modelar a interação atômica entre uma molécula pequena (ou ligante) e uma proteína, entre ácidos nucleicos e proteína; ou finalmente, entre proteína e proteína. Essa técnica permite tanto caracterizar o comportamento da molécula no local de acoplamento com a proteínaalvo, como elucidar os processos bioquímicos fundamentais (MCCONKEY; SOBOLEV; EDELMAN, 2002). A docagem molecular tem muitas aplicações, algumas das principais estão descritas na Tabela 1. Para esta dissertação, estuda-se a docagem molecular do tipo proteína-ligante.

O desenvolvimento de métodos de docagem molecular também está relacionado a realizar suposições corretas e otimizações aceitáveis que alcançam modelos preditivos com precisões flexíveis para calcular interações de proteína-ligante (MUKESH; RAKESH, 2011). Portanto, geralmente necessitam da utilização de técnicas heurísticas para que o problema possa ser realizado dentro de um tempo computacional razoável (SOTRIFFER et al., 2003).

Existem vários tipos de procedimentos quando o receptor ou o ligante são considerados rígidos ou flexíveis (GUEDES; MAGALHÃES; DARDENNE, 2014). O primeiro tipo é quando a proteína e o ligante são rígidos, aqui nem seus ângulos podem ser alterados, portanto, os espaços de busca são muitos limitados (GUPTA et al., 2007). O segundo tipo é quando a proteína ou ligante é flexível; quando o ligante é flexível, ele pode orga-

Aplicação	Descrição	Referências
Lead	Otimiza orientações e preve diferentes	AGARWAL; MEHRO-
Optimization	modos de ligação de uma molécula pe-	TRA (2016)
	quena ou ligantes à sua proteína alvo.	
	Esse tipo de pesquisa é usado para desen-	
	volver fármacos mais poderosos, eficien-	
	tes e seletivos.	
Hit	Analisa bancos de dados enormes para	KOLODZIK; SCHNEI-
Identifications	descobrir possíveis candidatos a fármacos	DER; RAREY (2018)
	in silico que possam interagir com a	
	proteína alvo.	
Drug-DNA	A predição inicial de afinidades entre	MEHROTRA et al.
Interactions	fármacos e ácidos nucléicos busca eluci-	(2013)
Studies	dar os efeitos colaterais dos fármacos no	HOLT; CHAIRES;
	nível molecular. Essas predições são úteis	TRENT (2008)
	para o estabelecimento de uma correlação	
	entre a estrutura molecular do fármaco e	
	sua citotoxicidade.	

Tabela 1: Aplicações da docagem molecular.

nizar sua estrutura (modificar os ângulos) em resposta ao receptor, há mais variedade de algoritmos para esse tipo de docagem (GUEDES; MAGALHÃES; DARDENNE, 2014); acontece da mesma maneira com a proteína flexível, ela pode modificar sua estrutura em relação a um ligante rígido (MOL et al., 2005). O terceiro tipo é quando a proteína e os ligantes são flexíveis, ambos modificam suas longitudes e ângulos para se docar melhor (MOL et al., 2005); a incorporação da flexibilidade do receptor (proteína) ainda é um desafio na área da docagem molecular, outro obstáculo é seu custo computacional (TUFFERY; DERREUMAUX, 2011).

Além da interação de proteína-ligantes, existem outros tipos de docagem molecular, como proteína-proteína (VAKSER, 2014; KOZAKOV et al., 2017) e proteína-ácido nucleico (MACKERELL JR; NILSSON, 2008), também importantes para a compreensão dos processos biológicos (TUSZYNSKA et al., 2015).

O método de docagem molecular envolve dois passos iterativos (Figura 1): a amostragem ou previsão da conformação do ligante e a pontuação de afinidade de interação do sítio de ligação para avaliar a estabilidade do repector-ligante (MORRIS et al., 2009). A amostragem será conceitualizada, mas não será tratado no contexto desta dissertação.

Figura 1: O método de docagem molecular. Ele envolve dois passos iterativos: busca e escore. Adaptado de: TU et al. (2018).

2.2 Etapas da docagem molecular

A docagem molecular tem duas etapas que estão relacionadas: a primeira é posicionar o ligante nos sítios ativos do receptor (busca); a segunda consiste em estimar a afinidade do complexo (escore) (HALPERIN et al., 2002). Idealmente, os dois tipos de algoritmos juntos devem reproduzir o modo de ligação receptor-ligante medido experimentalmente e a sua energia de afinidade deve ser classificada na primeira posição do *ranking* entre todas as conformações geradas (MENG et al., 2011).

Essas duas etapas são descritas e classificadas a seguir:

2.2.1 Busca

A primeira parte da docagem molecular é a etapa de busca, onde os ligantes são posicionados em vários locais do receptor. Para o tipo de docagem molecular estudado neste trabalho, o ligante é considerado como um corpo não rígido (pode modificar sua estrutura e sua torção (GUEDES; MAGALHÃES; DARDENNE, 2014)), portanto, o número de possíveis conformações aumenta (DASTMALCHI, 2016) comparado se ele não modifica sua estrutura (docagem com ligante rígida) (BURSULAYA et al., 2003).

Para esta etapa da docagem molecular, existem três tipos de algoritmos: sistemáticos, estocásticos ou determinísticos. Alguns deles podem ser de mais de um tipo (BROOIJ-MANS; KUNTZ, 2003). Os algoritmos sistemáticos são baseados em uma grade de valores para cada grau formal de liberdade, e cada um desses valores de grade é explorado de forma combinatória durante a pesquisa. A medida que o número de graus de liberdade aumenta, o número de avaliações necessárias aumenta rapidamente. Para lidar com esse problema, os critérios de parada são inseridos para evitar que o algoritmo apresente o espaço que é conhecido e retorne uma solução errada (HUANG; ZOU, 2010a). Os algoritmos estocásticos fazem alterações aleatórias, geralmente alterando um grau de liberdade do sistema por vez. Uma das principais preocupações com buscas estocásticas é a incerteza da convergência. Para melhorar a convergência, várias execuções independentes podem ser executadas (MORRIS; LIM-WILBY, 2008). Os algoritmos determinísticos usam o estado inicial para determinar o movimento que pode ser feito para gerar o próximo estado, que geralmente tem que ser igual ou menor em energia que o estado inicial. Um problema com algoritmos determinísticos é que eles geralmente ficam presos em mínimos locais porque não conseguem atravessar barreiras (BROOIJMANS; KUNTZ, 2003). Diversos algoritmos de busca foram desenvolvidos e amplamente utilizados em software de docagem molecular. Alguns são descritos na Tabela 2.

Algoritmo	Descrição	Referências	
Matching	Os algoritmos criam um molecular shape map de um ligante em um sítio ativo de	SHOICHET; KUN	TZ;
algorithms	uma proteína em termos de características de forma e informação química.	BODIAN (1992)	
	A molecular shape map é uma estrutura de dados que permite determinar quais		
	átomos do ligante e quais sítios do receptor se sobrepõem; para isso, múltiplas	EWING; KUN	JTZ
	orientações são geradas e cada uma recebe uma avaliação das interações intermo-	(1997) BROC	DIJ-
	leculares.	MANS; KUN	JTZ
	Esses algoritmos têm a vantagem de serem rápidos, portanto, podem ser usados	(2003)	
	como fator de enriquecimento de compostos ativos de grandes bibliotecas.		
Incremental	Primeiramente, o algoritmo coloca o ligante no sítio ativo de maneira fragmentada	BROOIJMANS;	
construction	e incremental. Segundo, o algoritmo seleciona um dos fragmentos a serem aco-	KUNTZ (2003)	
	plados primeiro no sítio ativo; geralmente é o maior e tem um papel ou interação	os primeiro no sítio ativo; geralmente é o maior e tem um papel ou interação RAREY et al. (1996)	
	fundamental com a proteína.		
Monte Carlo	Os algoritmos geram poses através da rotação ou da torção dos ângulos do ligante.	BROOIJMANS;	
algorithms	As conformações obtidas são avaliadas com um critério de seleção baseado em	KUNTZ (2003)	
(MC)	energia. Se o critério for um bom parâmetro, ele será salvo e modificado na se-	MENG et al. (2011)	
	guinte conformação. As iterações continuarão até que a quantidade predefinida		
	de conformações seja coletada.		
	A principal vantagem do método MC é que ele permite que o ligante cruze barrei-		
	ras de energia na superfície da energia potencial.		
Genetic	Os graus de liberdade do ligante são codificados como cadeias binárias chamadas	MORRIS et al. (199	8)
algorithms	genes. Esses genes formam o cromossomo que representa a posição do ligante. As	As	
(GA)	mutações fazem mudanças aleatórias nos genes; o cruzamento troca genes entre	e	
	dois cromossomos. Quando os operadores genéticos afetam os genes, o resultado		
	é uma nova estrutura de ligantes.		
Molecular	Esses algoritmos movem cada átomo separadamente no campo dos átomos restan-	BÜRGI; KOLLMAN;	
dynamics (MD)	tes, portanto, representa a flexibilidade tanto do ligante quanto da proteína mais	rtanto, representa a flexibilidade tanto do ligante quanto da proteína mais GUNSTEREN (2002)	
	efetivamente do que outros algoritmos.	MENG et al. (2011)	
	Esses tipos de algoritmos apresentam resultados muito realistas, mas são compu-		
	tacionalmente custosos.		

Tabela 2: Alguns algoritmos utilizados em busca para docagem molecular.

Nesta etapa, as poses de ligação são medidas através do RMSD (*root-mean-square deviation*), que é o valor médio entre os átomos das estruturas sobrepostas. Se o ligante acoplado mostra um valor < 2.0 Å RMSD com o ligante cristalográfico (SINGH et al., 2017), ele pode ser considerado como um docagem bem-sucedido. A Figura 2 mostra o exemplo do processo de busca do *software* AutoDock Vina (TROTT; OLSON, 2010). A proteína é representada em cinza, na forma de superfície e o ligante em diferentes posições durante a busca, representando em linhas, em laranja, cinza e rosa (os átomos de carbono em cores diferentes). A Figura mostra 3 diferentes posições durante a busca chamadas **mode 1**, **mode 2** e **mode 3**. Para cada posição é calculado um escore, descrito na Figura. Como pode-se observar, a melhor posição, de a cordo com o escore é o **mode 1**, destacado na Figura.

Figura 2: Cálculo da docagem molecular del complexo 1a1e utilizando AutoDock Vina (TROTT; OLSON, 2010). Na parte de cima, 3 posições durante a busca: **mode 1**, **mode 2** e **mode 3**. Na parte de baixo, destacada a melhor pose de acordo com o escore.

2.2.2 Cálculo da afinidade de ligação ou escore

A segunda parte da docagem molecular corresponde ao cálculo da afinidade de ligação, quando as numerosas poses obtidas na primeira parte são avaliadas usando uma função de escore. A função de escore é um modelo preditivo matemático que calcula uma pontuação a partir da energia livre de ligação entre um receptor e um ligante (KHA-MIS; GOMAA, 2015). Além da aplicação em docagem molecular, as funções de escore são também utilizadas para *virtual screening* ou triagem virtual, otimização de fármacos, entre outros (LEACH; SHOICHET; PEISHOFF, 2006; RAJAMANI; GOOD, 2007).

No docagem molecular, as funções de escore possuem três aplicações: determinar o modo de ligação (*binding mode*), calcular a afinidade de ligação (*binding affinity*) e identificar ligantes potenciais (*virtual screening*).

A primeira aplicação é determinar o modo de ligação (*binding mode*) do ligante no sítio de ligação da proteína. A docagem molecular gera centenas de orientações/conformações no sítio ativo da proteína. As funções de escore agrupam os resultados avaliando a interação de cada um dos complexos proteína-ligante resultantes. Uma função ideal classificaria o modo de ligação determinado experimentalmente no primeiro lugar do *ranking* (GOHLKE; HENDLICH; KLEBE, 2000). Dado o modo de ligação resultante, os cientistas podem entender melhor o mecanismo molecular e projetar medicamentos mais eficientes modificando a proteína ou o ligante (RAJAMANI; GOOD, 2007). A maneira de avaliar esta aplicação é através da sua capacidade de distinguir modos de ligação nativos de estruturas falsas ou *decoys*. Os *decoys* são ligantes, gerados computacionalmente, com estruturas geométricas incorretas que não se vinculam ao receptor (Figura 3). Esses tipos de moléculas artificiais são usados como falsos positivos nos testes de desempenho dos algoritmos de docagem molecular (GRAVES; BRENK; SHOICHET, 2005).

Figura 3: Estruturas não vinculantes ou *decoys*. Eles são ligantes com geométricas incorretas. Imagens obtidas com UCSF Chimera (PETTERSEN et al., 2004).

A segunda aplicação está relacionada com a primeira, consiste em prever a afinidade de ligação absoluta (*binding affinity*) entre a proteína e o ligante (AIN et al., 2015). Uma maneira de avaliar esta aplicação é comparar os resultados calculados com os dados experimentais. No entanto, em comparação com a previsão do modo de ligação, determinar o valor de energia de ligação é mais difícil de atingir devido à incerteza da afinidade nativa medida, sob as diferentes condições experimentais de diferentes grupos de pesquisa ou o erro experimental inerente no ensaio (SU et al., 2018; HUANG; ZOU, 2010a).

A terceira aplicação, talvez a mais importante no desenho de medicamentos com base

na estrutura, é identificar um medicamento potencial, dada uma proteína alvo determinada, procurando em um banco de dados de ligantes (*virtual screening* ou triagem virtual). Dado o alto custo da detecção experimental e a falta de disponibilidade de testes de alto rendimento, esse processo virtual desempenha um papel cada vez mais importante na descoberta de fármacos (HUANG; ZOU, 2010a). Esta aplicação é avaliada por meio da taxa cumulativa de inibidores/ligantes ativos que estão acima de um certo percentual de um banco de dados que inclui ligantes ativos e inativos (SU et al., 2018).

As três aplicações (modo de ligação, afinidade de ligação e trigem virtual) estão relacionados entre si. Uma função de escore eficiente funcionaria bem em cada uma delas. Entretanto, muitas funções de escore são boas apenas em uma ou duas das três aplicações (HUANG; ZOU, 2010a).

2.2.2.1 Tipos de funções de escore

As funções de escore foram evoluindo ao longo dos anos, sendo desenvolvidas a partir de diferentes abordagens. Essas abordagens podem ser classificadas da seguinte forma:

Physics-based

Esses tipos de funções de escore incluem métodos baseados em campos de força (*force-field*), modelos de solvatação (*solvation models*) e mecânica quântica (*quantum mechanics*) (LI; FU; ZHANG, 2019).

As funções clássicas *force-field* calculam a energia de ligação, acumulando interações *van der Waals* e eletrostáticas entre os pares de átomos proteína-ligante, que considera a contribuição da entalpia para a energia (MENG; SHOICHET; KUNTZ, 1992). Como esse tipo de abordagem não considera a entropia e o efeito do solvente, eles não são suficientemente precisos (HUANG; GRINTER; ZOU, 2010).

Esses tipos de funções foram evoluindo, incluindo a entropia de torção dos átomos dos ligantes e os efeitos de solvatação/dessolvatação descritos pelos modelos de solvente (YANG; LIGHTSTONE; WONG, 2013; MICHEL; TIRADO-RIVES; JORGEN-SEN, 2009). No entanto, a precisão da predição da energia da ligação está sujeita a forma funcional da energia potencial e aos parâmetros relacionados que são difíceis de localizar porque são do tipo *force-field* (LI; FU; ZHANG, 2019).

As abordagens mais recentes para esses tipos de funções de escore estão baseadas na mecânica quântica ou *quantum mechanics* (QM) para enfrentar os desafios de interações covalentes, polarização e transferência de carga no acoplamento (KULIK, 2018). Embora, as funções de escore baseados em QM tenham uma grande precisão, seu custo computacional é maior que as *force-field*. Por esta razão, um tipo híbrido foi desenvolvido usando a mecânica molecular para melhorar seu custo computacional, elas são conhecidas como *quantum mechanical/molecular mechanics* (QM/MM) (RAHA et al., 2007). Mesmo com suas desvantagens técnicas, o QM tem um grande potencial para substituir as *force-field* para avaliar as interações diretas entre as proteínas e os ligantes (CHASKAR; ZOETE; ROHRIG, 2014).

Em síntese, esses tipos de funções de escore baseadas na física podem calcular diretamente as interações entre átomos de proteínas e ligantes com uma precisão preditiva relativamente maior do que outros tipos de funções devido a consideração de entalpia, solvatação e entropia (LI; FU; ZHANG, 2019). Entretanto, seu custo computacional não permite o uso para análise de grandes bibliotecas de ligantes.

Empirical

As *empirical scoring functions* estimam a afinidade de interação de um complexo pela soma dos fatores de energia importantes para a ligação proteína-ligante, tais como ligações de hidrogênio, efeitos hidrofóbicos, choques estéricos, dessolvatação, entropia, etc (ELDRIDGE et al., 1997; LIU; WANG, 2015). Geralmente, é utilizado um conjunto de treinamento com afinidades de ligação conhecidas para otimizar os pesos de fatores de energia usando análise de regressão linear ¹ (KADUKOVA; GRUDININ, 2017).

Comparado com as funções de escore de tipo *physics-based*, são muito mais rápidas em cálculos de afinidade devido aos seus termos de energia simples e sua forma funcional intuitiva (LI et al., 2014). Sua aplicabilidade geral pode depender do conjunto de treinamento devido à sua natureza de ajustar as afinidades de enlace de um pequeno conjunto de dados. Com o rápido aumento do número de complexos proteína-ligante com estruturas 3D conhecidas e afinidades de ligação, é possível desenvolver uma função relativamente genérica, treinando com constantes de ligação conhecidas de milhares de dados (LI; FU; ZHANG, 2019).

Knowledge-based

As *knowledge-based scoring functions* ou *statistical-potential based scoring functions*, empregam potenciais de energia derivados de informações estruturais incorporadas em estruturas atômicas experimentalmente determinadas (SIPPL, 1990). O princípio destas funções de escore é simples: potenciais par-a-par, que são obtidos diretamente da frequência de ocorrência de pares de átomos em um banco de dados usando a relação inversa de Boltzmann (THOMAS; DILL, 1996). A ideia do método inverso de Boltzmann vem da mecânica estatística no campo da física (LIU; WANG, 2015).

Em comparação com as *physics-based* e *empirical*, essas funções de escore oferecem um bom equilíbrio entre precisão e velocidade (HUANG; ZOU, 2006). As *knowledge-based* são bastante robustas e relativamente insensíveis aos conjuntos de treinamentos (MUEGGE, 2006).

¹Método estatístico utilizado para estudar a relação entre variáveis quantitativas. Por meio dessa técnica, é obtida uma função linear de uma ou mais variáveis independentes ou preditivas $(X_1, X_2, ..., X_K)$, a partir das quais o valor de uma variável dependente ou critério (Y) é previsto (RENCHER; SCHAALJE, 2008).

Algumas dessas funções estão combinando potenciais par-a-par baseados em conhecimento com termos de solvatação e entropia, criando assim funções híbridas entre *knowledge-based* e *empirical* (HUANG; ZOU, 2010b).

Machine learning

As machine-learning scoring functions criam modelos preditivos a partir dos descritores que podem ser obtidos das propriedades do ligante e da proteína, bem como de seus padrões de interação (LIU; WANG, 2015). São utilizados como descritores por exemplo interações específicas (interações eletrostáticas, ligações de hidrogênio ou empilhamento aromático) (LISE et al., 2009), descritores geométricos (propriedades da superfície ou forma) (KHAMIS; GOMAA, 2015), descritores convencionais baseados nas propriedades de proteínas e ligantes (peso molecular, número de ligações rotacionáveis simples, estrutura 2D, estrutura 3D, etc.) (KUNDU; PAUL; BANERJEE, 2018), *fingerprints* (WÓJCIKOWSKI; ZIELENKIEWICZ; SIEDLECKI, 2015), entre outros.

Depois que os descritores são selecionados, vários algoritmos de *machine learning* podem ser usados, como *random forest* (BALLESTER; MITCHELL, 2010), *bayesian classifiers* (KLON; GLICK; DAVIES, 2004), *neural network* (DURRANT; MCCAM-MON, 2010), *deep learning* (JIMÉNEZ et al., 2018), entre outros. Semelhante às *empirical scoring functions*, esses métodos também precisam de um conjunto de treinamento de complexos proteína-ligante com estruturas conhecidas e dados de ligação para derivar seus modelos finais (AIN et al., 2015).

Embora as funções de escore baseadas no *machine learning* tenham superado as abordagens clássicas (*physics-based*, *Empirical*, *knowledge-based*) (KHAMIS; GOMAA, 2015; SU et al., 2018), não são amplamente utilizados para obter diretamente o valor da afinidade de ligação, geralmente o seu uso é para o *rescoring* (ZHANG et al., 2017; WANG; ZHANG, 2017). Isso acontece devido à alta dependência desses tipos de funções de escore no conjunto de dados de treinamento (LI; FU; ZHANG, 2019).

Essas funções de escore são diferentes dos tipos *knowledge-based* e *empirical* que também usam métodos de *machine learning*. Primeiro, esses tipos de funções não usam métodos necessariamente lineares (SINGH et al., 2016). Segundo, eles usam um número de descritores consideravelmente maiores que os termos das *scoring functions empirical* e usam uma seleção de atributos para criar o modelo final (WANG; ZHANG, 2017). Terceiro, os termos individuais das *scoring functions empirical* têm significados físicos interpretáveis (ELDRIDGE et al., 1997), enquanto a razão para combinar um determinado conjunto de descritores é muitas vezes vaga, de modo que uma função de escore baseada em descritores é essencialmente uma "caixa preta" (GABEL; DESAPHY; ROGNAN, 2014).

Consensus Scoring

Como cada função de escore tem suas vantagens e limitações, as *consensus scoring* combinam os resultados para equilibrar deficiências e encontrar soluções corretas (CHA-RIFSON et al., 1999). O principal passo para desenhar uma função de escore deste tipo é ter uma estratégia apropriada de pontuações individuais a serem aplicadas em cada circunstância (WANG; WANG, 2001). Sua desvantagem é a alta dependência de dados de treinamento e parametrização de cada função de escore com a qual foi formada (HUANG; GRINTER; ZOU, 2010).

Entre os tipos de funções de escore apresentados, este trabalho tem como foco o estudo e proposta de uma função de escore baseada em *machine learning*.

2.3 Aprendizado de máquina ou machine learning

O Aprendizado de máquina ou *machine Learning* o subcampo da ciência da computação e um ramo da inteligência artificial que cria sistemas que aprendem automaticamente. Os sistemas identificam padrões complexos em dados e preveem comportamentos por meio de um algoritmo (MARSLAND, 2015). Existem dois tipos de algoritmos de *machine learning*, supervisionado e não supervisionado. O aprendizado não supervisionado será conceitualizado, mas não será tratado no contexto desta dissertação.

2.3.1 Aprendizado não supervisionado

O aprendizado não supervisionado são métodos de *machine learning*, onde eles deduzem suas conclusões de acordo com o algoritmo, considerando fatores indiscriminadamente que não têm nome, ordem ou marca; em outras palavras, não existem dados de saída correspondentes às entradas (informação rotulada), é possível apenas descrever a estrutura dos dados e, assim, tentar encontrar algum tipo de organização que simplifique a análise, por isso é exploratória. Utiliza métodos de associação e *clustering* (AYODELE, 2010). Na docagem molecular, esses tipos de métodos são usados para agrupar substratos e inibidores. HARRINGTON (2012) WANG et al. (2005)

2.3.2 Aprendizado supervisionado

O aprendizado supervisionado são técnicas de *machine learning*, que deduzem uma função dos dados de treinamento. Os dados de treinamento consistem em pares de objetos (geralmente vetores): um componente do par são os dados de entrada e o outro são os resultados desejados. A saída da função pode ser um valor numérico (regressão) ou um rótulo de classe (classificação) (HARRINGTON, 2012). O objetivo do aprendizado supervisionado é criar uma função capaz de prever o valor correspondente para um conjunto de dados de entrada válido depois de ter aprendido a partir de uma série de exemplos (AYODELE, 2010).

Nos últimos anos, a aplicação de métodos de *machine learning* para a criação de modelos preditivos para determinar escore de ligação mostrou resultados promissores (KHA-MIS; GOMAA, 2015; SU et al., 2018). Alguns dessas técnicas são as seguintes:

2.3.2.1 Random Forest

O método *Random Forest* foi proposto por Breiman em 2001 (BREIMAN, 2001) e é baseado em ideias de agregação de modelos, para problemas de classificação e regressão. Este algoritmo é a combinação de árvores preditivas, de tal forma que cada árvore depende dos valores de um vetor aleatório de amostra independente e com a mesma distribuição de todas as árvores na floresta. Considerando um conjunto de aprendizagem $L = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$, feito de *n* observações independentes e identicamente distribuídas de um vetor aleatório (X, Y). O vetor $X = (X^1, \dots, X^P)$ contém preditores ou variáveis preditivas, onde: $X \in \mathbb{R}^P$, $Y \in T$ e *T* é um rótulo de classe ou uma resposta numérica. Para problemas de classificação, um modelo *t* é um mapeamento $t : \mathbb{R}^P \to T$, enquanto para problemas de regressão $Y_n = s(X) + \varepsilon \operatorname{com} E[\varepsilon|X] = 0$ e *s* a chamada função de regressão. O princípio do método é combinar muitas das árvores de decisão binária usando as amostras de aprendizado *L*, escolhendo aleatoriamente em cada nó um subconjunto de variáveis preditivas *X*.

Em estudos aplicando esta técnica, foi demonstrado que o método de regressão linear múltipla por *Random Forest* melhorou a precisão das funções de escore convencionais (LI et al., 2014; AFIFI; AL-SADEK, 2018).

2.3.2.2 Gaussian Process

Gaussian Process (GP) inclui métodos de aprendizado supervisionado de regressão e de classificação (RASMUSSEN, 2003). A maior vantagem desses métodos é que eles podem fornecer uma estimativa confiável de sua própria incerteza (RASMUSSEN, 2003). Eles têm outras vantagens, tais como: previsão interpolar de observações, cálculo de intervalos de confiança empíricos e adaptação em linha, simplicidade computacional, entre outros. Entre suas desvantagens, estão a perda de eficiência quando o número de características excede algumas dezenas (RASMUSSEN, 2003; SEEGER, 2004).

Os métodos regressivos do *Gaussian Process* são não-paramétricos (não estão limitados a uma forma funcional), portanto, em vez de calcular uma distribuição de probabilidade dos parâmetros de uma função específica, o método regressivo calcula a probabilidade de todas as funções admissíveis que se ajustam aos dados (SNELSON; GHAHRA-MANI, 2006). O cálculo probabilístico *a priori* é calculado com os dados de treinamento e o cálculo *a posteriori* é calculado com os pontos de interesse (SEEGER, 2004).

Os métodos regressivos do *Gaussian Process* são muitos versáteis, podem ser utilizados com diferentes tipos de *kernels* de covariância (suas entradas correspondem a função de covariância avaliada nas observações). Esses *kernels* codificam todos os pontos supos-

Kernel	Descrição	Formula
Constant Kernel	Pode ser usado como parte de um produto para	$\mathbf{k}(\mathbf{x}_i, x_j) = constant_value \ \forall \ x_1, x_2$
	dimensionar a magnitude de outro fator, ou	
	como parte de uma soma onde a média é mo-	
	dificada.	
White Kernel	Utilizado principalmente como parte de uma	$\mathbf{k}(\mathbf{x}_i, x_j) = noise_level \ if \ x_i == x_j \ else \ 0$
	soma para estimar o nível de ruído.	
Radial-Basis	Elas utilizam derivadas médias quadradas de to-	$\mathbf{k}(\mathbf{x}_i, x_j) = exp\left(-\frac{1}{2}d\left(\frac{x_i}{l}, \frac{x_j}{l}\right)^2\right)$
Function Kernel	das as ordens e, portanto, são muito suaves.	
Matern Kernel	Controla a suavidade da função e permite que	$\mathbf{k}(\mathbf{x}_i, x_j) = \sigma^2 \frac{1}{\Gamma(u)^{2\nu-1}} \left(\gamma \sqrt{2\nu} d\left(\frac{x_i}{l}, \frac{x_j}{l}\right) \right)^{\nu}$
	ela se adapte as propriedades da verdadeira	$\mathbf{K}_{u}\left(\gamma\sqrt{2v}d(\underline{x}_{i},\underline{x}_{j})\right)$
	relação funcional subjacente.	
Rational Qua-	Pode ser visto como uma mistura de escalas	$\mathbf{k}(\mathbf{x}_i, x_i) = \left(1 + \frac{d(x_i, x_j)^2}{2}\right)^{-\alpha}$
dratic Kernel	(uma soma infinita) de radial-basis function	$(2\alpha l^2)$
	<i>kernels</i> com diferentes escalas de comprimento.	
Exp-Sine-	Permite modelar funções periódicas	$\mathbf{k}(\mathbf{x} \mid \mathbf{x}) = ern\left(-2\left(\frac{\sin(\frac{\pi}{p} * d(x_i, x_j))}{2}\right)^2\right)$
Sauared Kernel	i ennite modelai ranções periodicas.	$\mathbf{R}(\mathbf{R}_l, \omega_j) = \exp\left(-2\left(-\frac{1}{l}\right)\right)$
Dot-Product	Pode ser obtido a partir de uma regressão linear.	$\mathbf{k}(\mathbf{x}_i, x_i) = \sigma_0^2 + x_i \cdot x_i$
Kernel		
	1	1

Tabela 3: Alguns algoritmos utilizados en busca para docagem molecular. Fonte: RAS-MUSSEN (2003).

tos na forma da função que está sendo modelada. Eles são ajustados durante a seleção do modelo e com os dados de treinamento (RASMUSSEN, 2003). As definições matemáticas de alguns *kernels* podem ser vistas na Tabela 3.

Na área de descoberta de fármacos, o método *Gaussian Process* foi utilizado para *vir-tual screening* (WANG et al., 2016), simulações de interações de proteína-ligante (MC-GANN et al., 2003), entre outros estudos (BAN; OHUE; AKIYAMA, 2017; HATHOUT; METWALLY, 2016; MELLOR et al., 2016).

2.4 Seleção de Atributos

Através de uma análise de características, é possível eliminar aqueles atributos que não têm importância sem afetar o desempenho do modelo. A seleção de características é um dos conceitos centrais do *machine learning* que afeta muito nos performances dos modelos; por meio dele, é possível reduzir o *overfitting*, aumentar a precisão e reduzir o tempo de treinamento (KURSA; RUDNICKI et al., 2010; QI, 2012).

O objetivo desses tipos de métodos é encontrar o relacionamento existente entre as características, em outras palavras, eles consideram selecionar ou excluir um atributo individualmente (univariada) ou um grupo de atributos (multivariada) (CAI et al., 2018). A aplicação de uma técnica de seleção depende do método de *machine learning*, por exemplo, um classificador *Naive Bayes classifier* considera cada atributo como independente do restante, portanto, a abordagem deve ser univariada (CHEN et al., 2009); por outro lado, uma *Neural Network* não assume a independência dos *features*, mas usa tudo o que possui; portanto, a abordagem deve ser multivariada (VERIKAS; BACAUSKIENE,
2002).

Os algoritmos de seleção de atributos podem ser classificados em duas classes gerais descritas a seguir:

2.4.1 Métodos de filtragem ou filter methods

Esses métodos aplicam uma medida estatística para atribuir uma pontuação a cada característica. Os atributos são classificados de acordo com sua pontuação e são selecionados para serem utilizados no treinamento ou removidos do conjunto de dados. Os métodos de filtragem geralmente são univariados e consideram cada atributo independentemente, ou com relação à variável dependente (CADENAS; GARRIDO; MARTÍNEZ, 2013).

Exemplos desses métodos são: *Linear discriminant analysis, Analysis of variance, Chi-Square* (JOVIĆ; BRKIĆ; BOGUNOVIĆ, 2015).

2.4.2 Métodos de empacotado ou wrapper methods

Esses métodos consideram a seleção de um conjunto de atributos como um problema de pesquisa, onde as diferentes combinações são avaliadas e comparadas. Para fazer essas avaliações, um modelo preditivo é utilizado e, em seguida, uma pontuação é atribuída a cada combinação com base na precisão do modelo. Esses métodos geralmente são computacionalmente muito caros (FOITHONG; PINNGERN; ATTACHOO, 2012).

Exemplos desses métodos são: *Forward Selection, Backward Elimination, Recursive Feature elimination* (SUTTER; KALIVAS, 1993).

3 TRABALHOS RELACIONADOS

Para docagem docagem molecular proteína-ligante, funções de escore baseadas em *machine learning* têm apresentado resultados promissores. Alguns trabalhos relacionados à proposta desta dissertação são descritos neste Capítulo. Finalmente, os trabalhos relacionados são resumidos na Tabela 4:

DeltaVinaRF20

A função de escore apresentada por WANG; ZHANG (2017) combina a força de afinidade calculada pelo *software* para a docagem molecular AutoDock Vina (TROTT; OLSON, 2010) (pKd^{Vina}) e um termo de correção calculado por um modelo *random* forest (ΔpKd^{RF}).

Essas função de escore utiliza 20 descritores, sendo 10 do AutoDock Vina e os outros 10 estão relacionados a área de superficie acessível ao solvente ou SASA (avalia quantitativamente a formação do núcleo hidrofóbico no processo de dobramento de proteínas) (DURHAM et al., 2009). Os descritores pertencentes ao AutoDock Vina descrevem interações do complexo proteína-ligante e termos dependentes do ligante (TROTT; OL-SON, 2010). Os termos SASA são calculados usando mudanças atômicas de SASA entre as estruturas antes da docagem molecular e após a docagem, utilizando o programa MSMS (SANNER; OLSON; SPEHNER, 1996).

Para treinar o modelo, os autores utilizaram um conjunto de dados composto por: 3336 estruturas de complexos cristalográficas com afinidades de ligação medidas experimentalmente obtidas do banco de dados PDBbind (v.2014) (CHENG et al., 2009; LI et al., 2014; WANG et al., 2004, 2005) e 3322 estruturas geradas por computador com afinidades computacionais de ligação do CSAR-NRC HiQ (DUNBAR JR et al., 2011; HUANG; ZOU, 2011).

De acordo com SU et al. (2018), o desempenho do DeltaVinaRF20 foi notável, com bons resultados para prever afinidades de ligação próximas as experimentais, prever afinidades relativas, identificar sítios de ligação nativos e moléculas ativas. Deve-se notar que essa abordagem é uma melhoria da função do escore de AutoDock Vina (TROTT; OLSON, 2010).

SFCscore(RF)

O modelo proposto por ZILIAN; SOTRIFFER (2013), melhora a *empirical scoring function SFCscore* (SOTRIFFER et al., 2008) utilizando o método *Random Forest* de tipo regressão. Eles criaram seu modelo preditor usando o pacote *randomForest* da linguagem de programação R (LIAW; WIENER et al., 2002).

Os autores utilizaram descritores fornecidos pelo SFCscore (SOTRIFFER et al., 2008), incluindo descritores dependentes de ligantes (como o número de ângulos de rotação), descritores para interações específicas (tais como ligações de hidrogênio ou interações aromáticas) e características da superfície (como superfícies de contato polares ou hidrofóbicas). Os descritores MW (peso molecular), NAtoms (número de átomos pesados), e TotLigSurf (superfície total do ligante) foram excluídos devido à sua correlação trivial frequentemente observada com a afinidade, independentemente da qualidade real da interação. No total, foram usados 63 descritores para o treinamento das novas funções de escore.

Para treinar os modelos, os autores usaram o PDBbind *refined set* v2007 (LIU et al., 2014), do qual eliminaram os complexos que também foram encontrados nos conjuntos de dados para testes, deixando um total de 1005 complexos. Como dados de teste foram utilizados: 195 complexos pertencentes ao PDBbind *benchmark set* (CHENG et al., 2009), 332 correspondentes ao CSAR-NRC 2010 (DUNBAR JR et al., 2011), 83 correspondentes ao CSAR 2012 *Exercise Data Sets* (DUNBAR JR et al., 2013) para os três objetivos CHK1, ERK2 e LpxC.

O *SFCscore(RF)* apresentou os bons resultados para os dois grupos de validação (PDBbind *benchmark set* e CSAR-NRC 2010). Contudo, no cenário de aplicação no mundo real, pode-se esperar um desempenho competente, conforme ilustrado pelo seu resultado com o conjunto de testes LpxC do CSAR 2012 *Exercise Data Sets*.

\mathbf{K}_{DEEP}

A abordagem proposta por JIMÉNEZ et al. (2018) utiliza *3D-convolutional neural networks* (JI et al., 2012), cuja profundidade foi simplificada devido ao tamanho do conjunto de dados de treinamento e as restrições de resolução da imagem, mas mantendo o restante da arquitetura fixa, incluindo a *rectified linear unit* (ReLU) (NAIR; HINTON, 2010) como uma função de ativação.

Para obter os descritores, as proteínas foram vistas desde uma perspectiva de visão computacional (JIMÉNEZ et al., 2017), como se fossem imagens 3D. Cada imagem 3D foi discretizada em voxel e foi definida como um conjunto de propriedades farmacológicas baseadas em átomos (hidrofóbicos, aromáticos, aceitadores de ligações de hidrogênio ou doadores, ionizáveis positivos ou negativos, metálicos). Os autores consideram que esses descritores 3D são de natureza muito geral e têm o potencial de serem aplicados em outros problemas de biologia estrutural.

Para treinar os modelos, foi utilizado o PDBbind *refined set* v.2016 (3767 complexos proteína-ligante) e para testar o PDBbind *core set* v.2016 (290 complexos proteínaligante) (LIU et al., 2014, 2017). Os autores asseguraram que nenhum complexo proteína ligante pertencesse em ambos os conjuntos simultaneamente.

No primeiro caso, o *Kdeep* teve resultados promissores (JIMÉNEZ et al., 2018), mas de acordo com os autores a precisão ainda é muito sensível à proteína específica utilizada. No segundo caso, para os exercícios CSAR-NRC HiQ (BENSON et al., 2007; DUNBAR JR et al., 2011, 2013), não supera o desempenho médio do RF-Score (BAL-LESTER; MITCHELL, 2010).

NNScore 2.0

O *NNScore* é uma função de escore baseada em uma rede neural para caracterizar as afinidades de ligação de proteína-ligante. A abordagem deste modelo é ortogonal às funções de escore existentes de tipo *physics-based* e *knowledge-based*, portanto, pode ser útil combiná-lo para um projeto de *consensus-scoring* (DURRANT; MCCAMMON, 2010, 2011a).

Para treinar as redes candidatas, foram utilizados 4141 complexos proteína-ligante do *Protein Data Bank* (BERMAN et al., 2003), que foram caracterizados por 350 propriedades da interação, como ligações de hidrogênio, enlaces hidrofóbicos, *salt bridges, van der Waals*, entre outras interações (DURRANT; MCCAMMON, 2011b).

De acordo com seus resultados apresentados, essa função de escore foi capaz de distinguir entre ligantes bem acoplados e mal acoplados, além de identificar ligantes verdadeiros entre falsos positivos (DURRANT; MCCAMMON, 2010).

Fundamental Molecular Properties

KUNDU; PAUL; BANERJEE (2018) propõem uma função de escore utilizando a ferramenta popular de *data mining* Weka (WITTEN et al., 2016; HALL et al., 2009) que fornece de vários algoritmos de *machine learning*, usando especificamente *Gaussian process, linear regression, multilayer perceptron, SMO regression, Kstar* e *Random forest*. Alguns parâmetros dos métodos têm seus valores padrões, porém outros foram otimizados de acordo com a necessidade do conjunto de dados, para predizer a afinidade com a melhor correlação e um menor erro.

Foram utilizados 127 descritores que representam características muito comuns, estes dados podem ser facilmente obtidas do banco de dados de proteínas (BERMAN et al., 2003) ou podem ser facilmente calculadas, tendo como base a disponibilidade da estrutura. Em relação das proteínas, foram utilizadas as características globais como informações sobre a sequência de aminoácidos, a estrutura secundária e a superfície acessível ao solvente. Quanto aos ligantes, foram incluídas todas as propriedades físicoquímicas disponíveis no *Pubchem* (KIM et al., 2015) e as propriedades estruturais calculadas com o PaDEL-descriptor (YAP, 2011).

Todos os dados para treinamento e testes foram obtidos do banco de dados PDBbind v.2015 (WANG et al., 2004, 2005). O conjunto de dados consistiu em 2864 instâncias, das quais 2578 correspondem a treinamento e 286 a testes. Os dados foram testados com *10-fold cross-validation* (KOHAVI et al., 1995). Avaliou-se os modelos por meio do *correlation coefficient* (R2) e *root mean square error* (RMSE). O método *Random Forest* obteve resultados promissores para prever afinidades experimentais.

Machine Learning Approach

KHAMIS; GOMAA (2015) analisaram 12 métodos de *machine learning*, disponíveis em pacotes de linguagem de programação R (TEAM et al., 2013). Os parâmetros de cada método foram otimizados até atingir o menor erro quadrático médio (RMSE) entre os valores previstos para cada modelo e os valores medidos experimentalmente, utilizando o conjunto de treinamento como dados de entrada.

Como descritores, foram extraídas características de vários *softwares* de docagem disponíveis na literatura: 36 características geométricas do RF-Score (BALLESTER; MIT-CHELL, 2010), 5 termos de energia do *software* BALL (HILDEBRANDT et al., 2010), 5 termos de energia do X-Score (WANG; LAI; WANG, 2002) e 59 características farmacológicas do *software* SLIDE (ZAVODSZKY et al., 2002).

Para treinar os modelos, os autores utilizaram o PDBbind *refined set* v.2013 (LIU et al., 2014), composto por 2959 complexos de proteína-ligante. para avaliar os modelos, eles usaram os conjuntos de dados de teste do CASF-2013 (LI et al., 2014; LIU et al., 2017).

Para medir os modelos propostos, eles foram comparados com outras 20 funções de escore avaliadas no CASF-2013 (LI et al., 2014), a maioria delas utilizadas em *software* comercial.

Para prever as afinidades próximas as experimentais e prever as afinidades relativas, o modelo *Random Forest* obteve o desempenho mais notável, superando a função de escore clássica (*X-ScoreHM*). Cabe salientar que para identificar os sítios de ligação nativos ou moléculas ativas, todas as funções de escore tiveram baixo desempenho.

A Tabela 4 resume as características dos trabalhos relacionados e compara c/ a função proposta neste trabalho.

Nome	Treino	Características	Método	Teste	Referencia
DeltaVinaRF20	3336 complexos de: PDBbind <i>refined set</i> v2014, PDBbind <i>general set</i> , CSAR-NRC HiQ, <i>decoys</i> selecionados de CSAR-NRC HiQ	10 descritores de AutoDock Vina e 10 descritores de área de superficie. acessível ao solvente.	Random Forest	PDBbind core set 2013	WANG; ZHANG (2017)
SFCscore(RF)	1005 complexos de PDBbind <i>refined set</i> v2007	63 descritores de interação e características de proteínas e ligantes, gerados com Relibase.	Random Forest	PDBbind benchmark set CSAR-NRC HiQ CSAR 2012	ZILIAN; SOTRIFFER (2013)
K _{DEEP}	3767 complexos de PDBbind <i>refined set</i> v2016	Descritores estruturais 3D gerados com DeepSite	Deep Learning	PDBbind <i>core set</i> 2016 CSAR-NRC HiQ	JIMÉNEZ et al. (2018)
NNScore 2.0	4141 complexos selecionados de Protein Data Bank	350 propriedades de interação gerados com BINANA (BINding ANAlyzer).	Neural Network	DUD database	DURRANT; MCCAMMON (2011a)
Fundamental Molecular Properties	2578 complexos de PDBbind <i>refined set</i> v2015	127 características comuns de proteínas, ligantes e interações entre eles, gerados com Biopython, DSSP, PaDEL-Descriptors e PubChem.	Gaussian Process	286 complexos de PDBbind <i>refined set</i> 2015	KUNDU; PAUL; BANERJEE (2018)
Machine Learning Approach	2959 complexos de PDBbind <i>refined set</i> v2013	36 atributos geométricos do RF-Score, 5 termos de energia do <i>software</i> BALL, 5 termos de energia do X-Score e 59 características farmacológicas do <i>software</i> SLIDE	PLSR, PCR, LR, RR, NN, DT, MLR, MARS, kNN, SVM, BRT, RF	CASF-2013	KHAMIS; GOMAA (2015)
Função de Escore Proposta	8489 complexos de: PDBbind <i>refined set</i> v2018, PDBbind <i>general set</i> , CSAR-NRC HiQ, decoys selecionados de CSAR-NRC HiQ	250 atributos consistindo em: sequência de aminoácidos, descritores e escore de AutoDock Vina, descritores do área de superfície acessível pelo solvente, estrutura secundária das proteínas, descritores de NNscore 2.0, PaDEL descritores, descritores de RDKit	Random Forest Gaussian Process	CASF-2016	DURRANT; MCCAMMON (2011b) LIU et al. (2014), WANG; ZHANG (2017), KUNDU; PAUL; BANERJEE (2018), SU et al. (2018)

Tabela 4: Res	umo dos	trabalhos	relacionados.

4 METODOLOGIA

O objetivo desta dissertação é desenvolver uma função de escore baseada em *machine learning*, por essa razão, cada um dos seguintes elementos são analisados: o conjunto de complexos proteína-ligante para o treinamento, os atributos de entrada, os algoritmos para obter o modelo de predição da função de escore e o resultado conseguido de acordo um conjunto de *benchmark* (SU et al., 2018; DUNBAR JR et al., 2011; HUANG; ZOU, 2011).

A Figura 4 apresenta a metodologia a ser utilizada, cada etapa será detalhada a seguir:

Figura 4: Metodologia a ser aplicada para a dissertação.

4.1 Bases de dados para treinamento e teste

As funções de escore são geralmente desenvolvidas e validadas usando as informações de afinidade de um conjunto de proteínas-ligantes que foram medidos e registrados experimentalmente (WANG et al., 2004); os dois mais utilizados e citados pelos pesquisadores são o PDBBind Database (WANG et al., 2005) e o Binding MOAD (BENSON et al., 2007). Outros tipos de dados utilizados para treinar e avaliar a docagem molecular são os *decoys*, que são estruturas artificiais de proteínas-ligantes gerados por computador (MY-SINGER et al., 2012). As bases de dados mais populares de complexos artificiais são *Decoys* CSAR-NRC HiQ (HUANG; ZOU, 2011) e DUD-E (MYSINGER et al., 2012).

Analisando os trabalhos realizados pelos autores (KHAMIS; GOMAA, 2015; ZI-LIAN; SOTRIFFER, 2013; WANG; ZHANG, 2017; SU et al., 2018), foram compilados os seguintes tipos de conjuntos de dados para serem utilizados na fase de treinamento da função de escore proposta.

4.1.1 PDBbind

O PDBbind é uma coleção de afinidades de ligação medidas experimentalmente para complexos biomoleculares depositados no Protein Data Bank (PDB). Esses dados são utilizados para estudos estatísticos sobre fenômenos moleculares que ocorrem em sistemas biológicos (WANG et al., 2004). Cada versão de seus conjuntos de dados é identificada pelo ano de seu lançamento.

Dois de seus conjuntos mais utilizados são o PDBbind *refined set* e o PDBbind *general set*, que são descritos a seguir:

4.1.1.1 PDBbind refined set

O PBbind *refined set* é baseada em estruturas de alta qualidade de complexos proteínas-ligantes e seus dados de ligação confiáveis. Eles foram retirados do PDBbind Database que fornece informações de vários complexos biomoleculares juntamente com os dados experimentais obtidos do seus artigos originais (WANG et al., 2005; LIU et al., 2014). Cada par proteína-ligante é escolhida de acordo com um conjunto de regras aplicadas para a qualidade da estrutura, a qualidade da ligação e natureza do complexo. Por exemplo, são aceitos complexos não covalentes com resolução abaixo de 2.5 Å, são rejeitados complexos com dados de ligação muito baixos (K_d ou $K_i > 10$ mM) ou com dados de ligação extremamente alto (K_d ou $K_i < 1$ pM), são aceitos apenas ligantes moleculares formados por átomos específicos (carbono, nitrogênio, oxigênio, fósforo, enxofre, halogênio e hidrogênio). Todos os critérios de seleção são descritos em LIU et al. (2017).

Os termos K_d e K_i são definidos na Seção 4.3.3.1.

PDBbind refined set 2007

Neste estudo utilizou-se a versão do PDBbind *refined set* 2007, que foram préselecionados em um estudo realizado por ZILIAN; SOTRIFFER (2013) para treinamento de funções de escore. Este mesmo conjunto de dados é utilizado nesse trabalho. Esse conjunto de dados é composto por 1005 complexos proteína-ligante.

PDBbind refined set 2013

Neste trabalho utilizou-se o conjunto de dados da versão 2013 do PDBbind *refined set*. Estes dados foram pré-selecionados por KHAMIS; GOMAA (2015) em sua pesquisa sobre funções de escore baseadas em *machine learning* e foram os mesmos utilizados neste estudo. Esse conjunto de dados contém cerca de 2959 complexos proteína-ligante, ao qual foi utilizado para treinamento das funções de escore.

PDBbind refined set 2016

Outro conjunto de dados que também foi utilizado é referente a versão do PDBbind refined set 2016, com dois tipos de conjuntos. O primeiro composta, por 1736 complexos proteína-ligante com afinidades medidas em K_d . O segundo, o conjunto total de 3728 complexos medidos em K_d e K_i . Cabe destacar que no estudo de WANG; ZHANG (2017) não são fornecidas informações específicas dos complexos utilizados do conjunto PDBbind refined set, portanto, estes dados foram compilados de acordo com as dicas descritas no artigo e usando versões mais recentes do conjunto PDBbind refined set.

Os termos K_d e K_i são definidos na Seção 4.3.3.1.

PDBbind refined set 2018

A versão 2018 do PDBbind composta por 4152 complexos proteína-ligante com afinidades medidas em K_d e K_i foi utilizada nesta pesquisa. Utilizou-se também um conjunto menor, da mesma versão, composto por 2085 complexos proteína-ligante com energia de interação medidos em K_d . Cabe destacar que no estudo de WANG; ZHANG (2017) não são fornecidas informações específicas dos complexos utilizados do conjunto PDBbind *refined set*, portanto, estes dados foram compilados de acordo com as dicas descritas no artigo (WANG; ZHANG, 2017) e utilizando versões mais recentes do PDBbind *refined set*.

Os termos K_d e K_i são definidos na Seção 4.3.3.1.

4.1.1.2 PDBbind general set

O PDBbind general set inclui todos os complexos proteína-ligante medidos em IC_{50} , $K_i \in K_d$, que foram e não foram selecionados do conjunto PDBbind refined set. Portanto, não tem limitação quanto as características da proteína e/ou ligante, ela inclui complexos com uma qualidade relativamente mais baixa, estruturas de menor resolução e complexos com afinidades fracas. (RANGANATHAN; NAKAI; SCHONBACH, 2018; WANG et al., 2005; LIU et al., 2014; LI et al., 2019). Um subconjunto desses complexos foi selecionado por WANG; ZHANG (2017) e descrito na próxima seção.

Os termos K_d , K_i e IC_{50} são definidos na Seção 4.3.3.1.

4.1.2 PDBbind weak set

Em contraste com os complexos de o PBbind *refined set*, este grupo de 458 proteínasligantes tem baixa afinidade de ligação (pKd entre 0.4 e 3) (WANG; ZHANG, 2017) e foram retirados do conjunto suplementar PDBbind *general set* (LIU et al., 2014).

4.1.3 CSAR-NRC HiQ

Corresponde a um conjunto de 343 estruturas cristalográficas de proteína-ligante de alta qualidade com informações determinadas experimentalmente e compiladas pela *Community Structure-Activity Resource* (CSAR) (DUNBAR JR et al., 2011) como conjunto de teste, cujos objetivos são prever a afinidade da ligação das estruturas e investigar as propriedades e métodos que podem dificultar o cálculo da energia de ligação. ZILIAN; SOTRIFFER (2013) utiliza este conjunto de teste para avaliar suas funções de escore propostas.

4.1.4 Decoys CSAR-NRC HiQ

Corresponde a um conjunto de moléculas com diferentes modos de ligação criadas computacionalmente pela *Community Structure-Activity Resource* (CSAR) (DUNBAR JR et al., 2011). Esses tipos de moléculas chamadas *decoys* permitem melhorar a capacidade da função de escore de discriminar modos de ligação quase nativos dos *decoys* (HUANG; ZOU, 2011).

Para compilar esse conjunto de dados, seguiu-se a metodologia utilizada por WANG; ZHANG (2017) para o desenvolvimento de sua função de escore. Os valores de afinidades de todo o conjunto de *Decoys* CSAR-NRC HiQ foram calculados utilizando o AutoDock Vina (TROTT; OLSON, 2010); então, para cada conjunto de *decoys* de cada complexo do CSAR-NRC HiQ do qual foram gerados, eles foram classificados da menor para a maior afinidade, e finalmente, foram selecionados: top0%, top10%, top20%, top30%, top40%, top50%, top60%, top70%, top80%, top90% e top100%. Como resultado, foi obtido um conjunto de 3773 *decoys* selecionados.

4.1.5 CSAR 2012

Corresponde a um conjunto de teste utilizado para *blind docking* (HETÉNYI; VAN DER SPOEL, 2006) e compilado por *Community Structure-Activity Resource* (CSAR). O conjunto é baseado em 34 dados experimentais para teste de alta qualidade de quatro tipos de proteínas.

ZILIAN; SOTRIFFER (2013) utiliza este conjunto de teste para avaliar suas funções de escore propostas.

4.1.6 PDBbind Benchmark

Corresponde à versão 2009 do CASF (CHENG et al., 2009). Seu conjunto de testes consiste em 195 complexos proteína-ligante extraídas do PDBbind *refined set* (LIU et al., 2014). O ZILIAN; SOTRIFFER (2013) utiliza esse conjunto de teste apenas para avalizar o desempenho de suas funções propostas para prever afinidades próximas às experimentais.

4.1.7 CASF-2013

O CASF-2013 inclui três conjuntos de testes utilizados para avaliar as funções do escore. O primeiro conjunto corresponde ao PDBbind *core set* com 195 complexos proteína-ligante, que são divididos em 65 grupos, agrupados por sequências de proteínas, onde cada grupo consiste em três complexos com baixa, média e alta similaridade (LI et al., 2014); esse conjunto é utilizado para avaliar os *benchmarks scoring power* e o *ranking power*. O segundo conjunto corresponde ao CASF-2013 *docking set*, onde, para cada complexo do PDBbind *core set*, foram gerados 100 *decoys* e que são utilizados para identificar poses nativas no teste do *benchmark docking power*. Finalmente, o terceiro conjunto corresponde ao CASF-2013 *screening set*, onde, para cada um dos 65 complexos de alta afinidade de cada grupo do PDBbind *core set*, foram gerados 9750 *decoys*, que incluem tanto os *decoys* próprios como dos outros 194 complexos do PDBbind *core set*, que serão utilizado para realizar *cross-binding* (SHAMSARA, 2016), para assim calcular o desempenho do *benchmark screening power*. Na Seção 4.4 são detalhados os quatro *benchmarks* usados na validação das funções de escore.

KHAMIS; GOMAA (2015) utilizou este conjunto de complexos proteína-ligante para avaliar suas funções de escore.

4.1.8 CASF-2016

O CASF-2016 inclui três conjuntos de testes utilizados para avaliar as funções do escore. O primeiro conjunto corresponde ao PDBbind *core set* com 285 complexos proteína-ligante, que são divididos em 57 grupos, agrupados de acordo com a sequências primárias das proteínas, onde cada grupo consiste em complexos com 5 níveis de similaridade (SU et al., 2018); esse conjunto serão utilizado para avaliar o *scoring power* e o *ranking power*. O segundo conjunto corresponde ao CASF-2016 *docking set*, onde, para cada complexo do PDBbind *core set*, foram gerados 100 *decoys* e que serão utilizados para identificar poses nativas no teste de *docking power*. Finalmente, o terceiro conjunto corresponde ao CASF-2016 *screening set*, onde, para cada um dos 57 complexos de mais alta afinidade de cada grupo do PDBbind *core set*, foram gerados 28500 *decoys*, que in-

cluem tanto os *decoys* próprios como dos outros 284 complexos do PDBbind *core set*, que serão utilizado para realizar *cross-binding* (SHAMSARA, 2016), para assim calcular os dois desempenhos de *screening power* (*forward* e *reverse*). Na Seção 4.4 são detalhados os quatro *benchmarks* usados na validação das funções de escore.

Esse conjunto de teste foi selecionado para avaliar as funções do escore propostos nesta dissertação.

4.1.9 Resumo das bases de dados de treinamento e teste

Todos os conjuntos de treinamento e teste são resumidos na Tabela 5. Cada um dos conjuntos foi identificado com um **ID**, que são utilizados como referência.

Тіро	Nome	Versão	Afinidades	ID	Tamanho
		2013	$K_d \mid K_i$	refined-set13	2959
		2007	$K_d \mid K_i$	refined-set07	1005
	DDBbind rafined set	2016	K_d	refined-set16A	1736
	r DDblild rejined sei	2016	$K_d \mid K_i$	refined-set16B	3728
Treinamento		2018	K_d	refined-set18A	2085
		2018	$K_d \mid K_i$	refined-set18B	4152
	PDBbind general set	weak set 2018	$K_d \mid K_i \mid IC_{50}$	weak-set18	458
		NRC HiQ	$K_d \mid K_i$	csar-nrc-hiq-set	343
	CSAR	NRC HiQ decoys	$K_d \mid K_i$	csar-decoys-all-set11	3773
		NRC HiQ	$K_d \mid K_i$	csar-set10	343
		2012	$K_d \mid K_i$	csar-set12	34
	PDBbind Banchmark	core set	$K_d \mid K_i$	core-set09	195
	I DDonia Denchmark	docking set	$K_d \mid K_i$	docking-set09	19500
Teste		core set	$K_d \mid K_i$	core-set13	195
Teste	CASF-2013	docking set	$K_d \mid K_i$	docking-set13	19500
		screening set	$K_d \mid K_i$	screening-set13	633750
		core set	$K_d \mid K_i$	core-set16	285
	CASF-2016	docking set	$K_d \mid K_i$	docking-set16	28500
		screening set	$K_d \mid K_i$	screening-set16	1624500

Tabela 5: Resumo das bases de dados de treinamento e teste.

Em alguns dos experimentos que serão descritos mais adiante, os conjuntos de complexos resumidos na Tabela 5 foram combinados para treinar os modelos. Para identificálos mais facilmente, na Tabela 6, eles foram rotulados por uma sigla que será utilizada como referência nas seções a seguir.

Sigla	ID do conjunto(s) de dado(s)	Tamanho
A13	refined-set13	2959
A07	refined-set07	1005
A16	refined-set16A	1736
B16	refined-set16B	3728
CS	csar-nrc-hiq-set	343
CS+WS	csar-nrc-hiq-set + weak-set18	801
CS+DS	csar-nrc-hiq-set + csar-decoys-all-set11	4116
CS+WS+DS	csar-nrc-hiq-set + weak-set18 + csar-decoys-all-set11	4574
RS	refined-set18A	2085
RS+WS	refined-set18A + weak-set18	2543
RS+DS	refined-set18A + csar-decoys-all-set11	5858
RS+CS	refined-set18A + csar-nrc-hiq-set	2428
RS+WS+CS+DS	refined-set18A + weak-set18 + csar-nrc-hiq-set + csar-decoys-all-set11	6659
FS	refined-set18B	4152
FS+WS	refined-set18B + weak-set18	4610
FS+DS	refined-set18B + csar-decoys-all-set11	7925
FS+WS+DS	refined-set18B + weak-set18 + csar-decoys-all-set11	8383
FS+CS+WS+DS	refined-set18B + csar-nrc-hiq-set + weak-set18 + csar-decoys-all-set11	8726

Tabela 6: Resumo dos conjuntos de treinamento dos experimentos.

4.2 Extração de descritores

Os descritores são uma parte importante das funções de escore baseadas em *machine learning* que devem ser criados a partir do conjunto de dados selecionado para treinamento. Vários tipos de descritores são avaliados nesta dissertação para criar a função de escore. Eles foram escolhidos por seu uso em trabalhos relacionados e são detalhadas a seguir:

4.2.1 Descritores Geométricos

O programa RF-Score é utilizado para extrair as características da interação intermolecular (BALLESTER; MITCHELL, 2010). Cada característica compreende o número de ocorrências de um tipo particular de par de átomos de proteína-ligante que interage dentro de um determinado intervalo de distância. Esses tipos de átomos podem ser: C, N, O, F, P, S, Cl, Br e I.

Como o número de contatos de proteína-ligante é constante para um complexo particular, quanto mais tipos de átomos forem considerados, mais dispersas serão as características resultantes. Portanto, um conjunto mínimo de tipos de átomos foi selecionado considerando apenas o número atômico, onde P(j) corresponde aos tipos de átomos da proteína e L(i) aos tipos de átomos do ligante (DENG; BRENEMAN; EMBRECHTS, 2004).

Devido à falta de aminoácidos proteogênicos com átomos F, P, Cl, Br e I; cada complexo pode gerar um total de 36 atributos, de (BALLESTER; MITCHELL, 2010).

$$\{P(j)\}_{j=1}^{4} = \{C, N, O, S\} \quad \{L(i)\}_{i=1}^{9} = \{C, N, O, F, P, S, Cl, Br, I\}$$
(1)

A contagem de ocorrências para um tipo particular de interações entre átomos j - i é definida por:

$$X_{Z(P(j)),Z(L(i))} \equiv \sum_{k=1}^{K_j} \sum_{l=1}^{L_i} \Theta(d_{cutoff} - d_{kl})$$
(2)

4.2.2 Descritores SFCscore

Estes descritores são calculados através do programa Relibase (HENDLICH et al., 2003), utilizando a abordagem SFCscore (SOTRIFFER et al., 2008). Além de obter os descritores simples, como o peso molecular ou o número de átomos do ligante, também são calculadas medidas para a complementaridade hidrofóbica, descritores de ligações rotacionáveis, de ligação de hidrogênio, de interação de metal, de interações aromáticas e uma variedade de descritores relacionados a superfície. As 66 características são listadas no Anexo A (Tabela 40).

De acordo com ZILIAN; SOTRIFFER (2013), os descritores MW (peso molecular), NAtoms (número de átomos pesados) e TotLigSurf (superfície total do ligante) serão excluídos devido a sua correlação trivial frequentemente observada com a afinidade, independentemente da real qualidade da interação. Então, 63 descritores são utilizados.

4.2.3 Descritores do AutoDock Vina

O AutoDock Vina é um programa para docagem molecular e triagem virtual. De acordo com um grande número de artigos, o AutoDock Vina é reconhecido por seu desempenho em docagem em comparação com outros softwares (TROTT; OLSON, 2010).

AutoDock Vina fornece uma grande quantidade de atributos (58 em total) que descrevem termos gaussianos, termos hidrofóbicos e não hidrofóbicos, ligações de hidrogênio, contagem de propriedades simples, termos eletrostáticos, termos de dessolvatação e um termo Lennard-Jones van der Waals. Todos esses termos estão listados e formulados no artigo de KOES; BAUMGARTNER; CAMACHO (2013).

Os atributos AutoDock vina podem ser gerados usando a ferramenta gratuita MGL-Tools (HUEY; MORRIS; FORLI, 2012).

4.2.4 Descritores relacionados à área de superfície acessível pelo solvente

Os aminoácidos hidrofóbicos no núcleo da proteína atuam como força motriz no dobramento de proteínas. A extensão em que um aminoácido interage com o solvente e o núcleo da proteína é naturalmente proporcional à área da superfície exposta a esses ambientes (MARSH; TEICHMANN, 2011). Há vários algoritmos para cálculo da SASA com base nessas abordagens (DURHAM et al., 2009). As 10 características são listadas no Anexo A (Tabela 41).

O programa MSMS permite calcular SASAs atômicos (DURHAM et al., 2009). Esses termos bSASA são medidos usando mudanças SASA atômicas entre as estruturas antes da docagem molecular e depóis da docagem molecular: para um átomo i, $bSASA_i = SASA_{i,unbound} - SASA_{i,complex}$.

4.2.5 Descritores do DeltaVinaRF20

Através do programa disponível DeltaVinaRF20 (WANG; ZHANG, 2017), essas características são geradas. Esses atributos correspondem a uma combinação de 10 atributos do AutoDock Vina (TROTT; OLSON, 2010; KOES; BAUMGARTNER; CAMA-CHO, 2013) com os 10 atributos da área da superfície acessível ao solvente (bSASA) (DURHAM et al., 2009). Elas são listadas no Anexo A (Tabela 42).

4.2.6 Escore do AutoDock Vina

Os *scripts* disponíveis pelos WANG; ZHANG (2017) também permitem gerar a pontuação de escore de AutoDock Vina, que também foi utilizada como caraterística de treinamento. A função de escore do AutoDock Vina combina as vantagens das *knowledge-based*, juntamente com informações empíricas (*empirical*) sobre preferências conformacionais de complexos receptor-ligante e medições de afinidade experimental (TROTT; OLSON, 2010).

4.2.7 Descritores relacionados à sequência de aminoácidos

A estrutura primária da proteína é caracterizada pela sequência única de aminoácidos. Cada aminoácido é codificado por um códon, que é uma sequência de três nucleotídeos de DNA ou RNA. A conformação nativa de uma proteína é determinada pelas interações interatômicas juntamente com a sequência de aminoácidos, em um determinado ambiente. Esse conhecimento da estrutura primária da proteína pode desempenhar um papel importante na previsão de sua conformação ao interagir com um ligante (JONES; THORNTON, 1996; KUNDU; PAUL; BANERJEE, 2018).

Para calcular a porcentagem da composição de aminoácidos, foi utilizado o programa Biopython (COCK et al., 2009), usando como entrada a cadeia FASTA de cada proteína (PEARSON, 2016).

Os tipos de aminoácidos estão listados no Anexo A (Tabela 43).

4.2.8 Descritores relacionados à estrutura secundária das proteínas

A estrutura secundária de uma proteína contém dados de dobramento que suas cadeias polipeptídicas adotam graças à formação de ligações de hidrogênio entre os átomos que formam a ligação peptídica (ROST, 2001; ANDERSEN et al., 2002). Algumas dessas informações sobre características especiais podem ajudar a construir um modelo de predição da interação de proteína-ligante (KUNDU; PAUL; BANERJEE, 2018). Algumas características da estrutura secundária para ser utilizadas como atributos de entrada para criar modelos preditivos são citadas no Anexo A (Tabela 44).

Para gerar informações sobre a estrutura secundária das proteínas, foi utilizado o programa DSSP (KUNDU; PAUL; BANERJEE, 2018).

4.2.9 PaDEL Descritores

Descritores moleculares de compostos químicos são utilizados para desenvolver modelos quantitativos para prever as atividades biológicas de novos fármacos. Atualmente, existe um grande número de atributos moleculares, classificados em três categorias: unidimensional, bidimensional e tridimensional (LIPINSKI et al., 1997; LIPINSKI, 2004).

Algumas características bidimensionais dos ligantes foram calculadas utilizando o software PaDEL-descriptor (YAP, 2011) e são listadas no Anexo A (Tabela 45).

4.2.10 Descritores BINANA (BINding ANAlyzer)

O pacote de software livre escrito em python, BINANA, permite descrever os complexos proteína-ligante através de múltiplas características de interação, como ligações de hidrogênio, enlaces hidrofóbicos, *salt bridges, van der Waals*, entre outras interações (DURRANT; MCCAMMON, 2011b). Esses descritores são utilizados para treinar os modelos preditivos do NNSCORE 2.0 (DURRANT; MCCAMMON, 2011a; WÓJCIKOWSKI; ZIELENKIEWICZ; SIEDLECKI, 2015). Os oito tipos de características que podem ser calculados estão descritos no Anexo A (Tabela 46).

4.2.11 Descritores gerados com RDKit

O RDKit é um *toolkit* de licença gratuita que permite tanto efetuar operações moleculares em 2D e 3D, como gerar descritores que podem ser utilizados para treinar modelos preditivos (LANDRUM, 2013). Utilizando este software foram calculados uma série de características dos ligantes agrupados na Tabela 47 do Anexo A.

4.2.12 Resumo dos descritores utilizados para treinamento e teste

Todas as características utilizadas para treinar e testar os modelos preditivos são resumidas na Tabela 7. Cada um dos descritores foi identificado com um **ID**, que servirá de referência nas próximas seções.

	•••		
ID	Nome	N° de atributos	
rf-score36	Descritores Geométricos	36	
sfcscore63	Descritores SFCscore	63	
vina58	Descritores do AutoDock Vina	58	
000010	Descritores relacionados à área	10	
Sasalu	de superfície acessível pelo solvente	10	
deltavina20	Descritores do DeltaVinaRF20	20	
vina-s1	Escore do AutoDock Vina	1	
amino20	Descritores relacionados à sequência	20	
amm020	de aminoácidos	20	
deep34	Descritores relacionados à estrutura	34	
ussp34	secundária das proteínas	54	
padel92	PaDEL Descritores	92	
binana350	Descritores BINANA (BINding	350	
Dillalla	ANAlyzer)}	550	
rdkit2D147	Descritores 2D gerados com RDKit	147	
rdkit3D11	Descritores 3D gerados com RDKit	11	

Tabela 7: Resumo dos descritores utilizados para treinamento e teste.

4.3 Geração das funções de escore baseadas em machine learning

Após da preparação dos dados, os modelos preditivos foram criados utilizando o Scikit-learn (PEDREGOSA et al., 2011), que é uma biblioteca de *machine learning* de *software open source* para a linguagem de programação Python (OLIPHANT, 2007). Ela inclui vários métodos de classificação, regressão e agrupamento conhecidos e pode interagir com outras bibliotecas numéricas e científicas como NumPy (VAN DER WALT; COLBERT; VAROQUAUX, 2011) e SciPy (BRESSERT, 2012). Nesta dissertação, foram utilizados dois métodos de regressão: *Random Forest* e *Gaussian Process*.

O *Random Forest* é um algoritmo que utiliza um método de *ensemble learning*, pois cria árvores de decisão que são executadas em paralelo e não há interação entre elas durante sua construção. Em sua versão de modo *regressor* utilizada neste trabalho, eles geram a previsão média (*mean prediction*) das árvores individuais, ao contrário das classes em seu modo *classifier*. O algoritmo ajusta várias árvores de decisão em várias subamostras do conjunto de dados e utiliza a previsão média para melhorar a precisão preditiva e controlar o sobreajuste (*overfitting*). O tamanho da subamostra é sempre o mesmo que o tamanho da amostra de entrada original, mas as amostras são extraídas com substituição se **bootstrap = True**. Os parâmetros que podem ser modificados para treinar os modelos: **n_estimators** (número de árvores na floresta), **max_depth** (profundidade máxima da árvore) e **max_features** (número de atributos a serem considerados) (GARRETA; MON-CECCHI, 2013; PRETTENHOFER; LOUPPE, 2014).

O *Gaussian Process* é um conjunto poderoso de algoritmos para regressão e classificação, cuja maior vantagem é que eles podem fornecer uma estimativa confiável de

sua própria incerteza (pode ser definida como um conjunto de resultados possíveis com suas respectivas probabilidades). A regressão do *Gaussian Process* não é paramétrica (ou seja, não é limitada por uma forma funcional); portanto, em vez de calcular a distribuição de probabilidade dos parâmetros de uma função específica, o algoritmo calcula a distribuição de probabilidade em todas as funções admissíveis que se encaixam nos dados. O método *Gaussian Process* utiliza *lazy-learning* (AHA, 2013) e uma medida de similitude entre pontos (função de covariância ou *kernel* que são definidos por *hyperparameters*). O Scikit-learn fornece uma variedade de *kernels* e permite especificar o valor inicial e os limites dos hiperparâmetros. Os hiperparâmetros são otimizados durante o ajuste do modelo, maximizando o valor de *log-marginal-likelihood* (LML) com base no otimizador aprovado. Como o LML pode ter vários locais ótimos, o otimizador pode ser iniciado repetidamente especificando **n_restarts_optimizer** (GARRETA; MONCECCHI, 2013; ERICKSON; ANKENMAN; SANCHEZ, 2018).

Também foram levados em consideração métodos para melhorar a qualidade do modelo preditivo, os mesmos são descritos nas Seções a seguir.

4.3.1 Seleção de Atributos

Através de uma análise de características, é possível eliminar aqueles atributos que não têm importância sem afetar o desempenho do modelo. A seleção de características é um dos conceitos centrais do *machine learning* que afeta muito na performance dos modelos; por meio dele, é possível reduzir o *overfitting*, aumentar a precisão e reduzir o tempo de treinamento (KURSA; RUDNICKI et al., 2010; QI, 2012).

O LASSO (*Least Absolute Shrinkage and Selection Operator*) é um método de análise de regressão que executa seleção e regularização de variáveis para melhorar a precisão e a interpretabilidade do modelo preditivo (FONTI; BELITSER, 2017). Este método formula o ajuste de curvas como um problema de programação quadrática, onde a função objetivo penaliza o tamanho absoluto dos coeficientes de regressão, dependendo do valor de um parâmetro de ajuste λ . Assim, com sendo o β um vetor de coeficientes, o método LASSO o estima minimizando o seguinte problema de mínimos quadrados penalizados:

$$\min_{\beta} \sum_{i=1}^{n} (y_i - x'_i \beta)^2$$
(3)

sujeito a:

$$\sum_{j=1}^{p} |\beta_j| \le t \tag{4}$$

ou equivalente à minimização da seguinte expressão:

$$\sum_{i=1}^{n} (y_i - x'_i \beta)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$
(5)

onde t e λ são os parâmetros de regularização ou penalidade. Para valores grandes de λ ou valores pequenos de t, os coeficientes β_j são contraídos em direção a zero e alguns deles são anulados, portanto, diz-se que o LASSO produz estimativas de parâmetros e seleção simultânea de variáveis (TIBSHIRANI et al., 2005).

Os parâmetros utilizados do método LASSO implementado pelo Scikit-learn foram: **max_iter** (número máximo de iterações ou testes realizados) e **cv** (número de *cross-validation* ou validação cruzada realizados para reajustar o modelo e calcular o erro de validação associado) (PEDREGOSA et al., 2011).

4.3.2 Otimização de Parâmetros

Para criar um modelo preditivo, diferentes tipos de restrições, pesos ou taxas de aprendizado são necessários para generalizar diferentes padrões de dados. Essas medidas são chamadas hiperparâmetros e devem ser ajustadas para que o modelo possa generalizar o problema de *machine learning* (BERGSTRA; BENGIO, 2012). O ajuste do hiperparâmetro depende mais dos resultados experimentais do que da teoria e, portanto, o melhor método para determinar a configuração ideal é testar muitas combinações diferentes para avaliar o desempenho de cada modelo (HUTTER; LÜCKE; SCHMIDT-THIEME, 2015).

O Skicit-learn possui métodos automatizados para ajustar os hiperparâmetros, um deles é o GridSearchCV que gera exaustivamente candidatos a partir de uma tabela de valores. O método, para calcular a precisão, cria modelos utilizando diferentes combinações de parâmetros acompanhadas de *cross-validation* (KRAMER, 2016). Nesta dissertação, em alguns experimentos foi aplicada a otimização dos parâmetros.

4.3.3 Atributos-alvo

Para este trabalho, foram consideradas duas abordagens em relação ao atributos-alvos: a abordagem tradicional, que consiste em calcular diretamente a afinidade de ligação experimental, representada por $-LogK_d$, utilizado em KHAMIS; GOMAA (2015) e ZI-LIAN; SOTRIFFER (2013); e a abordagem proposta por WANG; ZHANG (2017), que é calcular o termo de correção ΔpK_d que melhora o resultado obtido pela AutoDock Vina TROTT; OLSON (2010). Os dois tipos de atributos de alvo são descritos a seguir.

4.3.3.1 Afinidades experimentais

A afinidade de ligação determina a força com a qual uma pequena molécula é incorporada dentro de um sítio de ligação. Ela é normalmente medida pela constante de dissociação de equilíbrio K_d , onde os valores mais baixos representam maior estabilidade na interação proteica (VERLI, 2014). A Figura 5 apresenta algumas variações típicas de várias classes de interações nos sistemas biológicos. Portanto, as altas afinidades são representadas por valores geralmente entre 10^{-7} e 10^{-16} ou menos; e as afinidades baixas geralmente têm valores acima de 10^{-3} .

Figura 5: Escala de valores para K_d . As barras coloridas indicam as faixas de valores das constantes de dissociação presentes nos sistemas biológicos. Fonte: NELSON; COX (2018).

Como os valores das afinidades de ligação são representados em potências de 10, para sua melhor interpretação, eles podem ser expressos como o negativo do logaritmo da constante de dissociação no equilíbrio (K_d) , ou seja, $p_{Kd} = -\log_{10} K_d$. A partir desses valores, pode-se selecionar características estruturais e geométricas de complexos proteína-ligante que permitem uma melhor predição das suas interações (ROCHA; AZE-VEDO JÚNIOR, 2009).

Como as interações em sua maior parte são reversíveis, elas também podem ser representadas pelo termo de associação K_A . A constante de dissociação K_d é recíproca neste valor ($K_d = \frac{[1]}{K_A}$). Portanto, quanto maior o valor de K_A corresponde a uma maior força de ligação do ligante pela proteína (VERLI, 2014).

Existe um tipo de proteína, conhecida como enzima, em que sua ligação com seu ligante é apenas a primeira etapa de suas funções. Essas macromoléculas interagem com um ou mais ligantes, chamados substratos, gerando um ou mais produtos quimicamente modificados. Na formação das estruturas secundária e terciária de uma enzima, acabam surgindo certos locais na molécula que servirão de encaixe para o alojamento de um ou mais substratos. Esses locais de encaixe são chamados de sítio ativos e ficam na superfície

da enzima. Para atingir o equilíbrio entre a interação enzima-substrato, é utilizado um inibidor, que reduz a atividade permanente. Ela é medida por meio de uma constante inibição K_i (ZOLLNER; ZOLLNER, 1993; ENGLISH et al., 2006).

Outro jeito de medir a eficácia dos inibidores é através da concentração inibitória média IC_{50} . Esta medida quantitativa indica quanta substância é necessária para inibir um processo biológico ou componente de um processo (enzima) pela metade (YUNG-CHI; PRUSOFF, 1973).

Nas bases de dados utilizadas para treinamento, o valor da afinidade de ligação compreende valores de K_d , K_i e IC_{50}

4.3.3.2 Termo de correção ΔpK_d

O objetivo de WANG; ZHANG (2017) foi apresentar uma abordagem que visa aprimorar as previsões obtidas pela função de escore de AutoDock Vina (TROTT; OLSON, 2010), calculando um termo de correção ΔpK_d , definido pela diferença entre os valores experimentais e os escores obtida pelo AutoDock Vina $pK_d(exp) - pK_d(vina)$.

O escore final resultante é definido por:

$$pK_d(\Delta_{vina}RF) = pK_d(vina) + \Delta pK_d(RF)$$
(6)

O termo de correção delta $\Delta p K_d$ é utilizado como atributo-alvo.

4.4 Avaliação

O CASF-2016 (SU et al., 2018) foi selecionado para avaliar o desempenho das funções de escore propostos neste trabalho. Este guia de referência disponibiliza três conjuntos de teste para qualificar as funções do escore de acordo com quatro métricas: *scoring power, ranking power, docking power* e *screening power*. Além do anterior, também inclui outros recursos, como *scripts* para calcular as métricas e os resultados de outras funções de escore que podem ser utilizadas para realizar comparações de desempenho.

Scoring Power

Essa métrica indica a capacidade da função de escore para prever afinidades de ligação em uma correlação linear com os dados das afinidades medidas experimentalmente (SU et al., 2018; LI et al., 2018). Para isso, é utilizado o conjunto de teste PDBbind *core set* com 285 complexos proteína-ligante com os dados de suas estruturas cristalográficas originais (LIU et al., 2014, 2017). Os *scripts* do CASF-2016 medem esses resultados através do cálculo do *Pearson's correlation coefficient* (R) e do *Standard Deviation* (SD), sendo o primeiro o principal indicador para avaliar os resultados e que será levado em

consideração neste trabalho. O fluxo do processo para o cálculo do *Scoring Power* pode ser visto na Figura 6.

Figura 6: Fluxograma para calcular o *Scoring Power*. Essa métrica indica a capacidade da função de escore para prever afinidades de ligação em uma correlação linear com os dados das afinidades medidas experimentalmente. Fonte: SU et al. (2018).

Para cada um dos 285 complexos proteína-ligante do PDBbind *core set*, é previsto seu valor de escore utilizando a função de escore em avaliação (Tabela 8):

row	PDB code	score	
1	4llx	3.380352	
2	5c28	3.709917	
3	3uuo	5.898538	
4	3ui7	6.266304	
5	5c2h	7.735573	
6	2v00	4.566018	
7	3wz8	-2.689525	
8	3pww	7.756409	
9	3prs	7.918791	
	•••		
	••••		
272	3ueu	4.107291	
282	3d6q	3.691157	
283	1w4o	-1.200119	
284	100h	4.659375	
285	1u1b	5.68551	

Tabela 8: Scoring Power - Cálculo dos escores de ligação.

De acordo com as instruções do CASF-2016 (SU et al., 2018; LI et al., 2018), para a avaliação dos resultados, é necessário remover os valores discrepantes (*outliers*). Neste trabalho, os valores de escore são positivos, portanto, os valores negativos são excluidos (Tabela 9):

row	PDB code	score	
1	4llx	3.380352	
2	5c28	3.709917	
3	3uuo	5.898538	
4	3ui7	6.266304	
5	5c2h	7.735573	
6	2v00	4.566018	
7	3pww	7.756409	
8	3prs	7.918791	
9	3u8n	3.576708	
	•••		
276	3f3d	4.547845	
277	3ueu	4.107291	
278	3d6q	3.691157	
279	100h	4.659375	
280	1u1b	5.68551	

Tabela 9: Scoring Power - Exclusão de outliers.

Para o cálculo do *scoring power*, é aplicado a fórmula do *Pearson's correlation coefficient* (R), onde o valor previsto é considerado x e o valor experimental é considerado valor y ((-LogKd)) (Tabela 10):

$$R = \frac{\sum_{i}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{i}^{n} (y_i - \overline{y})^2}}$$
(7)

row	PDB code	score (x)	logKa (y)
1	4llx	3.380352	2.89
2	5c28	3.709917	5.66
3	3uuo	5.898538	7.96
4	3ui7	6.266304	9
5	5c2h	7.735573	11.09
6	2v00	4.566018	3.66
7	3pww	7.756409	7.32
8	3prs	7.918791	7.82
9	3u8n	3.576708	7.1
		•••	
276	3f3d	4.547845	7.16
277	3ueu	4.107291	5.24
278	3d6q	3.691157	3.76
279	100h	4.659375	5.92
280	1u1b	5.68551	7.8

Tabela 10: Scoring Power - Cálculo do Pearson's correlation coefficient.

O CASF-2016 considera os valores de *Pearson* abaixo de 0.63 como não muito promissor (Figura 7) (SU et al., 2018; LI et al., 2018).

Figura 7: Scoring Power - Pearson's correlation coefficient.

Ranking Power

O *Ranking Power* calcula a capacidade da função de escore de classificar corretamente os ligantes conhecidos para uma proteína específica, onde são dadas suas poses de ligação (*binding poses*); diferentemente do *scoring power*, essa avaliação não exige uma correlação linear entre as pontuações calculadas com seus dados experimentais (SU et al., 2018; LI et al., 2018). Para o *ranking power*, o conjunto de teste PDBbind *core set* é dividido em 57 grupos de complexos, onde cada um deles tem 5 complexos formados para uma proteína-alvo comum; então, o objetivo da função de escore é classificar cada grupo desses 5 complexos de acordo com seu nível de energia (LIU et al., 2014, 2017). Para quantificar o *ranking power*, são utilizados 3 indicadores: *Spearman's rank correlation coefficient*, *Kendall's rank correlation coefficient* e *Predictive Index*. De acordo com SU et al. (2018), existe uma boa correlação entre esses três indicadores, o que indica que eles são essencialmente equivalentes para classificar as funções de escore, portanto, o *Spearman's rank correlation coefficient* será levado em consideração neste trabalho. O fluxo do processo para o cálculo do *Ranking Power* pode ser visto na Figura 8.

Figura 8: Fluxograma para calcular o *Ranking Power*. Calcula a capacidade da função de escore de classificar corretamente os ligantes conhecidos para uma proteína específica, onde são dadas suas poses de ligação (*binding poses*). Fonte: SU et al. (2018).

Para cada grupo dos 57 complexos proteína-ligante do PDBbind *core set*, são previsto os valores de escore utilizando a função de escore proposta (Tabela 11):

PDB code	grupo	score
5c2h	1	7.7355728740587
3ui7	1	6.26630409812151
3uuo	1	5.89853796157854
5c28	1	3.70991675336831
4llx	1	3.38035156480402
3prs	2	7.91879076850892
3pww	2	7.75640939176151
3uri	2	7.21291390490474
3wz8	2	6.65226033012843
2v00	2	4.56601764938294
		•
		•
1u1b	57	5.68550976759771
100h	57	4.65937529013253
1w4o	57	4.20011882729858
3d6q	57	3.69115712376196
3dxg	57	3.60147377768403

Tabela 11: *Ranking Power* - Cálculo dos escores de ligação para cada grupo de complexos proteína-ligante.

Cada grupo de complexos proteína-ligante é classificado em cinco níveis de afinidade (Tabela 12):

Tabela 12: *Ranking Power* - Classificação dos escores de ligação para cada grupo de complexos proteína-ligante em cinco níveis de afinidade.

PDB code	grupo	score	rank
5c2h	1	7.7355728740587	1
3ui7	1	6.26630409812151	2
3uuo	1	5.89853796157854	3
5c28	1	3.70991675336831	4
4llx	1	3.38035156480402	5
3prs	2	7.91879076850892	1
3pww	2	7.75640939176151	2
3uri	2	7.21291390490474	3
3wz8	2	6.65226033012843	4
2v00	2	4.56601764938294	5
		•••	
		•••	
1u1b	57	5.68550976759771	1
100h	57	4.65937529013253	2
1w4o	57	4.20011882729858	3
3d6q	57	3.69115712376196	4
3dxg	57	3.60147377768403	5

Os valores calculados são cruzados com os níveis de afinidade registrados experimentalmente (Tabela 13 e Tabela 14):

PDB code	grupo	logKa	rank
5c2h	1	11.09	1
3ui7	1	9	2
3uuo	1	7.96	3
5c28	1	5.66	4
4llx	1	2.89	5
3prs	2	9	1
3pww	2	7.82	2
3uri	2	7.32	3
3wz8	2	5.82	4
2v00	2	3.66	5
1u1b	57	7.8	1
100h	57	5.92	2
1w4o	57	5.22	3
3d6q	57	3.76	4
3dxg	57	2.4	5

Tabela 13: Ranking Power - Níveis de afinidade registrados experimentalmente.

Tabela 14: *Ranking Power* - Níveis de afinidade previstos e registrados experimentalmente.

PDB code	grupo	logKa	rank (x)	score	rank(y)
5c2h	1	11.09	1	7.7355728740587	1
3ui7	1	9	2	6.26630409812151	2
3uuo	1	7.96	3	5.89853796157854	3
5c28	1	5.66	4	3.70991675336831	4
4llx	1	2.89	5	3.38035156480402	5
3prs	2	9	1	7.21291390490474	3
3pww	2	7.82	2	7.91879076850892	1
3uri	2	7.32	3	7.75640939176151	2
3wz8	2	5.82	4	6.65226033012843	4
2v00	2	3.66	5	4.56601764938294	5
1u1b	57	7.8	1	5.68550976759771	1
100h	57	5.92	2	4.65937529013253	2
1w4o	57	5.22	3	4.20011882729858	3
3d6q	57	3.76	4	3.69115712376196	4
3dxg	57	2.4	5	3.60147377768403	5

O cálculo de *Spearman's rank correlation coefficient* (SP) é realizado para cada grupo de complexos proteína-ligante (Tabela 15):

$$SP = \frac{\sum_{i}^{n} (rx_i - \overline{rx})(y_i - \overline{ry})}{\sqrt{\sum_{i}^{n} (x_i - \overline{rx})^2} \sqrt{\sum_{i}^{n} (y_i - \overline{ry})^2}}$$
(8)

		0				
PDB code	grupo	logKa	rank (x)	score	rank(y)	SP
5c2h	1	11.09	1	7.7355728740587	1	
3ui7	1	9	2	6.26630409812151	2	
3uuo	1	7.96	3	5.89853796157854	3	1
5c28	1	5.66	4	3.70991675336831	4	
4llx	1	2.89	5	3.38035156480402	5	
3prs	2	9	1	7.21291390490474	3	
3pww	2	7.82	2	7.91879076850892	1	
3uri	2	7.32	3	7.75640939176151	2	0.7
3wz8	2	5.82	4	6.65226033012843	4	1
2v00	2	3.66	5	4.56601764938294	5	1
				-		
1u1b	57	7.8	1	5.68550976759771	1	
100h	57	5.92	2	4.65937529013253	2	
1w4o	57	5.22	3	4.20011882729858	3	1
3d6q	57	3.76	4	3.69115712376196	4	
3dxg	57	2.4	5	3.60147377768403	5	

Tabela 15: *Ranking Power* - Cálculo do *Spearman's rank correlation coefficient* para cada grupo de complexos proteína-ligante.

O desempenho do *ranking power* corresponde ao valor médio de todos os índices de SP.

O CASF-2016 não indica um valor de SP para considerar um resultado promissor (SU et al., 2018), outros autores indicam que um resultado regular de SP maior que 0.5 já pode ser considerado (CROUX; DEHON, 2010; SEDGWICK, 2014).

Docking Power

Refere-se à capacidade da função de escore proposta para identificar a posição de ligação do ligante nativo entre *decoys* gerados por computador (SU et al., 2018; LI et al., 2018). Para avaliar o *Docking Power*, é utilizado o conjunto de teste CASF-2016 *docking set*, que inclui aproximadamente 100 *decoys* (com seu respectivo valor de *binding pose* em RMSD) para cada um dos complexos proteína-ligante do conjunto PDBbind *core set* (LIU et al., 2014, 2017). O *Docking Power* é medido através da taxa de sucesso para identificar poses de ligação (*binding poses*) com RMSD abaixo do limite estabelecido pelo CASF-2016 (2 Å), de acordo com sua posição na classificação, considerando verdadeiro se eles se enquadram no Top1, Top2 ou Top3. Os fluxos do processo para o cálculo do *Docking Power* podem ser vistas na Figura 9 e Figura 10, uma incluindo a pose nativa (é adicionado ao conjunto de teste para garantir que pelo menos contenha uma pose de ligação correta) e na outra não. Idealmente, o ligante nativo deve ser identificado como o melhor posicionado entre todas as moléculas testadas para cada proteína-alvo (LIU et al., 2014, 2017).

Figura 9: Fluxograma para calcular o *Docking Power*. Calcula a capacidade da função de escore proposta para identificar a posição de ligação do ligante nativo entre *decoys*. A pose nativa é adicionada ao conjunto de teste para garantir que pelo menos contenha uma pose de ligação correta. Fonte: SU et al. (2018).

Figura 10: Fluxograma para calcular o *Docking Power* (sem incluir a pose nativa). Calcula a capacidade da função de escore para identificar a melhor pose de união com RMSD abaixo de 2 Å entre *decoys*. Fonte: SU et al. (2018).

Para cada grupo dos 285 complexos proteína-ligante do CASF-2016 *docking set*, são previsto os valores de escore utilizando a função de escore proposta (Tabela 16):

code	score		
411x_208	3.42181853361642		
4llx_213	3.41996942507985		
411x_236	3.3259440381854		
411x_243	2.67533270090382		
411x_943	2.02431160477386		
411x_967	0.090992579958041		
411x_977	1.13569139642884		
4llx_ligand	3.38035156480402		

Tabela 16: *Docking Power* - Cálculo dos escores de ligação para cada grupo de complexos proteína-ligante.

Os resultados das afinidades de cada grupo de complexos proteína-ligante são classificados do mais alto para o mais baixo e são cruzados com seus valores de RMSD (Tabela 17). O RMSD é a distância entre o centro de massa do ligante nativo e o ligante calculado de acordo com SU et al. (2018):

$$RMSD = \sqrt{\frac{\sum_{i=1}^{N} [(x_i - x'_i)^2 + (y_i - y'_i)^2 + (z_i - z'_i)^2]}{N}}$$
(9)

Tabela 17: *Docking Power* - Classificação dos escores de ligação para cada grupo de complexos proteína-ligante e cruzados com seus valores de RMSD.

code	score	RMSD		
4llx_276	3.44420268214236	0.96		
4llx_208	3.42181853361642	1.53		
4llx_213	3.41996942507985	0.45		
4llx_ligand	3.38035156480402	0		
4llx_236	3.3259440381854	0.43		
•••				
4llx_686	-2.62968721150932	4.11		
4llx_475	-4.28315868022044	3.18		
4llx_451	-5.45898133069821	3.91		
4llx_478	-7.63402425481485	2.11		

Se os valores RMSD dos três primeiros lugares estiverem dentro do limite definido como 2 Å, eles serão considerados verdadeiros (Tabela 18). Para levar em conta, se uma posição mais alta atende à condição, consequentemente também as mais baixas. A taxa de sucesso é definida como a soma de todas as vezes que Top1, Top2 ou Top3 tem ligantes com RMSD < 2 Å:

$$SuccessRate = \frac{\sum_{i=1}^{N} X_i}{N}$$
(10)

 Tabela 18: Docking Power - Cálculo das taxas de sucesso para cada grupo de complexos proteína-ligante.

 code
 Bank1
 BMSD1
 Bank2
 BMSD2
 Bank3
 BMSD3
 TOP1
 TOP2
 TOP3

code	Rank1	RMSD1	Rank2	RMSD2	Rank3	RMSD3	TOP1	TOP2	TOP3
4llx	4llx_276	0.96	411x_208	1.53	4llx_213	0.45	1	1	1
5c28	5c28_693	1.16	5c28_382	2.1	5c28_ligand	0	1	1	1
3uuo	3uuo_943	0.69	3uuo_247	0.64	3uuo_711	0.55	1	1	1
3ui7	3ui7_333	0.45	3ui7_ligand	0	3ui7_90	3.11	1	1	1
5c2h	5c2h_244	0.59	5c2h_216	0.96	5c2h_240	0.46	1	1	1
				•••					
				•••					
2c3i	2c3i_382	2.75	2c3i_387	0.98	2c3i_338	1.57	0	1	1
3d6q	3d6q_338	3.15	3d6q_313	2.04	3d6q_367	2.47	0	0	0
1w4o	1w4o_391	0.95	1w4o_274	0.82	1w4o_376	0.67	1	1	1
100h	100h_ligand	0	100h_253	1.14	100h_272	0.77	1	1	1
1u1b	1u1b_2	2.8	1u1b_919	2.04	1u1b_385	8.26	0	0	0
4ih5	4ih5_5	4.06	4ih5_227	3.85	4ih5_384	1.02	0	0	1
					Suco	cess Rate:	0.84	0.92	0.94

As taxas de sucesso acima de 70% são consideradas promissoras pelo CASF-2016 (SU et al., 2018).

Screening Power

Na versão do CASF-2016, o Screening Power avalia dois tipos de desempenhos: Forward Screening Power e Reverse Screening Power. O Forward Screening Power refere-se à capacidade da função de escore proposta para identificar ligantes verdadeiros para uma proteína-alvo entre moléculas aleatórias; por outro lado, o Reverse Screening Power refere-se à capacidade do modelo preditivo para identificar proteínas-alvos potenciais para um ligante específico (SU et al., 2018; LI et al., 2018). O CASF-2016 screening set é usado para calcular os dois Screening Power, que inclui 57 grupos de teste compostos por 285 conjuntos de complexos proteína-ligante, em que cada conjunto inclui 100 decoys para cada complexo, deixando um total de 28500 complexos de proteínaligante para cada grupo de teste (SU et al., 2018). O Forward Screening Power é avaliado através da taxa de sucesso calculada pela média de ligantes verdadeiros identificados entre moléculas aleatórias se eles se enquadram no topo da classificação (Top1%, Top5% e Top10%), e também é medido por Enhancement Factor (EF) que é calculado através da identificação de ligantes verdadeiros entre os melhores candidatos (1%, 5% e 10%). O Reverse Screening Power é avaliado através da taxa de sucesso calculada pela média de proteínas-alvos potenciais identificadas entre os melhores classificados (Top1%, Top5%

e Top10%). A seguir, o *Forward Screening Power* e o *Reverse Screening Power* serão explicados separadamente.

Figura 11: Fluxograma para calcular o *Forward Screening Power*. Essa métrica indica a capacidade da função de escore proposta para identificar ligantes verdadeiros para uma proteína-alvo entre moléculas aleatórias. Fonte: SU et al. (2018).

Figura 12: Fluxograma para calcular o *Reverse Screening Power*. Mede a capacidade do modelo preditivo para identificar proteínas-alvos potenciais para um ligante específico. Fonte: SU et al. (2018).

O fluxo do processo para o cálculo do *Forward Screening Power* pode ser visto na Figura 11.

Para cada um dos 57 grupos de teste do CASF-2016 *screening set*, são calculados os valores de escore de cada complexo (Tabela 19):

row	complex code		score		
1	3gnw	1a30_ligand_10	2.88120844342364		
2	3gnw	1a30_ligand_100	2.94649184225473		
3	3gnw	1a30_ligand_103	4.20840453740772		
4	3gnw	1a30_ligand_107	3.15075824099334		
		•••			
		•••			
		•••			
14250	3gnw	3ary_ligand_178	-1.5123954405924		
14251	3gnw	3ary_ligand_185	4.72421376351265		
14252	3gnw	3ary_ligand_193	3.15492472576589		
14253	3gnw	3ary_ligand_197	4.22092946619377		
	••••				
		•••			
28497	3gnw	5tmn_ligand_85	3.41502075929358		
28498	3gnw	5tmn_ligand_90	3.38692636273626		
28499	3gnw	5tmn_ligand_93	3.6936340530588		
28500	3gnw	5tmn_ligand_96	3.67670897976272		

 Tabela 19: Forward Screening Power - Cálculo dos escores de ligação para cada grupo de teste.

Para cada grupo de teste, todos os valores de afinidades são classificados do mais alto para o mais baixo (Tabela 20):

Tabela 20: *Forward Screening Power*- Classificação dos escores de ligação para cada grupo de teste.

row	complex	code	score		
1	3gnw	3gnw_ligand_366	7.54443544307501		
2	3gnw	2yki_ligand_44	7.35609263206443		
3	3gnw	309i_ligand_428	7.3547574782455		
4	3gnw	4x6p_ligand_60	7.34772278443375		
		•••			
14250	3gnw	3ozt_ligand_167	2.96035812469237		
14251	3gnw	4gkm_ligand_67	2.96026631872768		
14252	3gnw	3nq9_ligand_35	2.9602632151634		
14253	253 3gnw 3wz8_ligand_220		2.96013252027045		
	· · · · · · · · · · · · · · · · · · ·				
28497	3gnw	4eky_ligand_373	-15.9368163291353		
28498	3gnw	3ag9_ligand_190	-16.3941772696094		
28499	3gnw	4ty7_ligand_22	-17.0008483123458		
28500	3gnw	2vw5_ligand_71	-18.9352095550446		

Dentro do conjunto de testes de 285 complexos proteína-ligante do CASF-2016, cada uma das 57 proteínas-alvo do teste de *Screening Power* possui cinco ligantes conhecidos. Esses ligantes conhecidos serão tomados como positivos e o restante das moléculas (280) como negativos (Tabela 21):

code	logKa	protein target			
4llx	2.89	1			
5c28	5.66	1			
3uuo	7.96	1			
3ui7	9	1			
5c2h	11.09	1			
	••				
	· · ·				
4ih5	4.11	15			
4ih7	5.24	15			
3cj4	6.51	15			
4eo8	8.15	15			
3gnw	9.1	15			
• • • •					
3dxg	2.4	57			
3d6q	3.76	57			
1w4o	5.22	57			
100h	5.92	57			
1u1b	7.8	57			

Tabela 21: Forward Screening Power - Ligantes conhecidos para cada proteína-alvo.

Para cada grupo de teste, se um ligante conhecido estiver localizado dentro de 1%, 5% ou 10% da classificação, ele será considerado verdadeiro; a taxa de sucesso é definida como o valor médio entre todos os valores calculados. o *Enhancement Factor* calcula o número de ligantes verdadeiros observados entre os candidatos com melhores classificações (top1%, top5% ou top10%) para uma proteína-alvo específica (o número total de ligantes verdadeiros é cinco) (SU et al., 2018) (Tabela 22):

$$SuccessRate = \frac{\sum_{i=1}^{N} X_i}{N}$$
(11)

$$EF_{\alpha} = \frac{NTB_{\alpha}}{NTB_{total}.\alpha} \tag{12}$$
Tabela 22: *Forward Screening Power* - Cálculo das taxas de sucesso e *Enhancement Factors* para cada grupo de complexos proteína-ligante.

row	target	rank1%	rank5%	rank10%	TOP1%	TOP5%	TOP10%		
1	5c2h	-	-	-	0	0	0		
2	3uri	-	3prs	-	0	1	1		
3	4rfm	-	4rfm	-	0	1	1		
4	4ty7	-	4cra	-	0	1	1		
				•••					
				•••					
20	3u8n	-	-	-	0	0	0		
21	309i	1g2k	-	-	1	1	1		
22	3p5o	-	3p5o	-	0	1	1		
23	3ejr	-	-	3d4z	0	0	1		
				•••					
				•••					
54	4w9h	-	-	4w9h	0	0	1		
55	3uex	-	-	-	0	0	0		
56	4gr0	4gr0	-	-	1	1	1		
57	1u1b	-	-	-	0	0	0		
			Su	ccess Rate:	0.21	0.439	0.509		
]	Enhancem	0.686	0.351	0.254			

O fluxo do processo para o cálculo do *Reverse Screening Power* pode ser visto na Figura 12.

Para calcular o *Reverse Screening Power*, é utilizado o mesmo conjunto de teste CASF-2016 *screening set* e segue os mesmos dois passos apresentados na Tabela 19 e na Tabela 20.

Em cada grupo de teste, as proteínas-alvo devem ser classificadas em 1%, 5% ou 10% do topo para serem consideradas verdadeiras. As taxas de sucesso são calculadas como o valor médio de todos os valores calculados (Tabela 23):

$$SuccessRate = \frac{\sum_{i=1}^{N} X_i}{N}$$
(13)

row	code	rank1%	rank5%	rank10%	TOP1%	TOP5%	TOP10%		
1	4llx	-	-	-	0	0	0		
2	5c28	-	5c28	-	0	1	1		
3	3uuo	3uuo	-	-	1	1	1		
4	3ui7	-	-	-	0	0	0		
	····								
				•••					
143	3pww	-	-	3pww	0	0	1		
144	3prs	3prs	-	-	1	1	1		
145	3uri	3uri	-	-	1	1	1		
146	4m0z	-	-	-	0	0	0		
				•••					
				•••					
282	3d6q	-	3d6q	-	0	1	1		
283	1w4o	-	-	-	0	0	0		
284	100h		100h		0	1	1		
285	1u1b	-	-	1u1b	0	0	1		
	Success Rate: 0.186 0.291 0.358								

Tabela 23: *Reverse Screening Power* - Cálculo das taxas de sucesso para cada grupo de complexos proteína-ligante.

O CASF-2016 considera o *Screening Power* como o aspecto mais fraco da função de escore, onde os modelos preditivos com pontuações mais altas atingem taxas de sucesso em torno de 40% (SU et al., 2018).

5 RESULTADOS

Para desenvolver a função de escore, foram realizadas uma série de 20 experimentos, que evoluíram junto com a metodologia até atingir o modelo proposto. Primeiramente, eles consistiram em experimentos para entendimento sobre o problema (1-2), onde outras funções de escore da literatura, foram treinadas com outro método *machine learning* (utilizando os mesmos conjuntos de dados de treinamento e teste), com a finalidade de analisar se eles poderiam melhorar seus desempenhos.

Posteriormente, os experimentos foram realizados com o objetivo de compilar um conjunto de treinamento (3-10), para o qual foi escolhida a abordagem de WANG; ZHANG (2017), onde os autores agruparam uma grande variedade de complexos proteína-ligante obtidos de diferentes fontes, como PDBbind (WANG et al., 2004) ou CSAR-NRC HiQ (DUNBAR JR et al., 2011); nesses experimentos, além de selecionar a base do treino, também foi utilizado o método *Gaussian Process* e/ou o atributo-alvo ΔpK_d para criar os modelos.

A seguir, os experimentos (11-13), foram incluídos novos conjuntos de atributos utilizados em outras funções de escores (DURRANT; MCCAMMON, 2011b; HUEY; MOR-RIS; FORLI, 2012) ou que poderiam ser gerados com ferramentas de estudo de moléculas, com a finalidade de melhorar os resultados obtidos nos anteriores; a partir daí, foi considerado apenas um método *machine learning (Random Forest)* para treinar os modelos.

Assim, no experimento 14, a técnica de seleção de atributos LASSO (TIBSHIRANI, 1996) foi aplicada, com o propósito de excluir as características que não são importantes e, assim, melhorar a precisão da função de escore; a partir daqui, todos os experimentos subsequentes (15-19) consideram para o treinamento apenas os atributos importantes calculados nesta etapa.

Finalmente, para melhorar ainda mais a precisão dos modelos, foram realizados experimentos para otimizar os hiperparâmetros utilizados para treinar as funções de escore, aplicando, em primeiro lugar, o ajuste manual por meio de criações de várias instâncias (15-18) e, em segundo lugar, usando a ferramenta automática GridSearchCV (KRAMER, 2016) (19-20). Nas Tabelas 24-27, são resumidos todos os experimentos; os mesmos são detalhados no Anexo B.

Nro.	Objetivo	Treino	Teste	Atributos	Alvo	Método ML	Seleção Atributos	Otimização Parámetros	Avaliação
1	Comparar modelos <i>Gaussian Process</i> com outras 12 funções de escore baseadas em <i>machine learning</i> , utilizando atributos geométricos.	A13	core-set13 docking-set13 screening-set13	rf-score36	-LogKd	Gaussian Process	Não	Não	Scoring Power Ranking Power Docking Power Screening Power
2	Utilizar os atributos do SFCscore com modelos Gaussian Process para comparar com os resultados obtidos com as funções de escore treinadas com o Random Forest.	A07	core-set09 csar-set10 csar-set12	sfcscore63	-LogKd	Gaussian Process	Não	Não	Scoring Power
3	Comparar os métodos <i>Gaussian Process</i> e <i>Random</i> <i>Forest</i> utilizando os atributos DeltaVinaRF20 e duas versões do PDBbind <i>refined set</i> nas métricas do <i>Scoring Power</i> e <i>Ranking Power</i> .	B16, FS	core-set16	deltavina20	-LogKd	Gaussian Process Random Forest	Não	Não	Scoring Power Ranking Power
4	Comparar os métodos <i>Gaussian Process</i> e <i>Random</i> <i>Forest</i> utilizando os atributos DeltaVinaRF20 e dois subconjuntos do PDBbind <i>refined set</i> nas métricas do <i>Scoring Power</i> e <i>Ranking Power</i> .	A16, RS	core-set16	deltavina20	-LogKd	Gaussian Process Random Forest	Não	Não	Scoring Power Ranking Power
5	Utilizar o termo de correção do AutoDock Vina $\Delta p K_d$ como atributo-alvo nos modelos <i>Gaussian</i> <i>Process</i> e <i>Random Forest</i> para avaliá-los nas métricas <i>Scoring Power</i> e <i>Ranking Power</i> .	RS, FS	core-set16	deltavina20	$\Delta p K_d(RF)$	Gaussian Process Random Forest	Não	Não	Scoring Power Ranking Power
6	Utilizar o termo de correção do AutoDock Vina $\Delta p K_d$ como atributo-alvo nos modelos <i>Gaussian</i> <i>Process</i> e <i>Random Forest</i> para avaliá-los na métrica <i>Docking Power</i> .	RS, FS	docking-set16	deltavina20	$\Delta p K_d(RF)$	Gaussian Process Random Forest	Não	Não	Docking Power

Tabela 24: Resumo dos experimentos 1 a 6.

Nro.	Objetivo	Treino	Teste	Atributos	Alvo	Método ML	Seleção Atributos	Otimização Parámetros	Avaliação
7	Treinar modelos <i>Random Forest</i> com 7 conjuntos de dados diferentes, com os atributos do DeltaVinaRF20 e o termo de correção ΔpK_d como atributo-alvo, finalmente, avalie-os com o CASF-2016.	RS, FS, RS+CS, RS+WS, RS+DS, RS+WS+CS+DS, FS+WS+CS+DS	core-set16 docking-set16 screening-set16	deltavina20	$\Delta p K_d(RF)$	Random Forest	Não	Não	Scoring Power Ranking Power Docking Power Screening Power
8	Treinar modelos <i>Random Forest</i> com 7 conjuntos de dados diferentes, com os atributos do DeltaVinaRF20 e o valor experimental como atributo-alvo, finalmente, avalie-os com o CASF-2016.	RS, FS, RS+CS, RS+WS, RS+DS, RS+WS+CS+DS, FS+WS+CS+DS	core-set16 docking-set16 screening-set16	deltavina20	-LogKd	Random Forest	Não	Não	Scoring Power Ranking Power Docking Power Screening Power
9	Treinar modelos <i>Gaussian Process</i> com 7 conjuntos de dados diferentes, com os atributos do DeltaVinaRF20 e o termo de correção ΔpK_d como atributo-alvo, finalmente, avalie-os com o CASF-2016.	RS, FS, RS+CS, RS+WS, RS+DS, RS+WS+CS+DS, FS+WS+CS+DS	core-set16 docking-set16 screening-set16	deltavina20	$\Delta p K_d(RF)$	Gaussian Process	Não	Não	Scoring Power Ranking Power Docking Power Screening Power
10	Treinar modelos <i>Gaussian Process</i> com 7 conjuntos de dados diferentes, com os atributos do DeltaVinaRF20 e o valor experimental como atributo-alvo, finalmente, avalie-os com o CASF-2016.	RS, FS, RS+CS, RS+WS, RS+DS, RS+WS+CS+DS, FS+WS+CS+DS	core-set16 docking-set16 screening-set16	deltavina20	-LogKd	Gaussian Process	Não	Não	Scoring Power Ranking Power Docking Power Screening Power
11	Utilizar os novos atributos gerados, exceto o escore do AutoDock Vina, para treinar modelos <i>Random</i> <i>Forest</i> e avaliá-los com o CASF-2016.	FS, CS, CS+WS, FS+WS, CS+DS, FS+DS, FS+WS+DS, CS+WS+DS, FS+CS+WS+DS	core-set16 docking-set16 screening-set16	amino20, dssp34, binana350, padel92, rdkt2d147, rdkt3d11, sasa10, vina58	-LogKd	Random Forest	Não	Não	Scoring Power Ranking Power Docking Power Screening Power

Tabela 25: Resumo dos experimentos 7 a 11.

Nro.	Objetivo	Treino	Teste	Atributos	Alvo	Método ML	Seleção Atributos	Otimização Parámetros	Avaliação
12	Treinar modelos <i>Random Forest</i> , sem considerar os termos gerados para o AutoDock Vina e, em vez disso, utilizar o valor de escore calculado por sua função de escore, finalmente, avalie-os com o CASF-2016.	FS, CS, CS+WS, FS+WS, CS+DS, FS+DS, FS+WS+DS, CS+WS+DS, FS+CS+WS+DS	core-set16 docking-set16 screening-set16	amino20, dssp34, binana350, padel92, rdkt2d147, rdkt3d11, sasa10, vina-s1	-LogKd	Random Forest	Não	Não	Scoring Power Ranking Power Docking Power Screening Power
13	Treinar modelos <i>Random Forest</i> , sem considerar o escore de AutoDock Vina e os atributos de NNScore 2.0, finalmente, avalie-os com o CASF-2016.	FS, CS, CS+WS, FS+WS, CS+DS, FS+DS, FS+WS+DS, CS+WS+DS, FS+CS+WS+DS	core-set16 docking-set16 screening-set16	amino20, dssp34, padel92, rdkt2d147, rdkt3d11, sasa10, vina58	-LogKd	Random Forest	Não	Não	Scoring Power Ranking Power Docking Power Screening Power
14	Calcular utilizando LassoCV os pesos de todas as características em relação ao atributo-alvo e selecionar um conjunto para treinar um modelo <i>Random Forest</i> que atinja o melhor desempenho nas métricas do CASF-2016.	FS+CS+WS+DS	core-set16 docking-set16 screening-set16	amino20, dssp34, binana350, padel92, rdkt2d147, rdkt3d11, sasa10, vina58, vina-s1	-LogKd	Random Forest	LassoCV	Não	Scoring Power Ranking Power Docking Power Screening Power
15	Ajustar os valores dos parâmetros do método <i>Random Forest</i> para encontrar uma combinação que melhore o desempenho do modelo preditivo nas métricas do CASF-2016.	FS+CS+WS+DS	core-set16 docking-set16 screening-set16	amino20, dssp34, binana350, padel92, rdkt2d147, rdkt3d11, sasa10, vina58, vina-s1	-LogKd	Random Forest	LassoCV	Manual	Scoring Power Ranking Power Docking Power Screening Power
16	Avaliar a metodologia aplicada utilizando a seleção de atributos e a melhor combinação de parâmetros encontrada para criar o modelo <i>Random Forest</i> , finalmente, calcular seu desempenho com as métricas do CASF-2016.	FS+CS+WS+DS	core-set16 docking-set16 screening-set16	amino20, dssp34, binana350, padel92, rdkt2d147, rdkt3d11, sasa10, vina58, vina-s1	-LogKd	Random Forest	LassoCV	Manual	Scoring Power Ranking Power Docking Power Screening Power

Tabela 26: Resumo dos experimentos 12 a 16.

Nro.	Objetivo	Treino	Teste	Atributos	Alvo	Método ML	Seleção Atributos	Otimização Parámetros	Avaliação
17	Avaliar a metodologia aplicada utilizando a seleção de atributos e outra combinação de parâmetros para criar o modelo <i>Random Forest</i> , finalmente, calcular seu desempenho com as métricas do CASF-2016.	FS+CS+WS+DS	core-set16 docking-set16 screening-set16	amino20, dssp34, binana350, padel92, rdkt2d147, rdkt3d11, sasa10, vina58, vina-s1	-LogKd	Random Forest	LassoCV	Manual	Scoring Power Ranking Power Docking Power Screening Power
18	Criar modelos preditivos sem considerar as sequências de aminoácidos das proteínas como atributos de entrada que são os mais importantes em relação ao atributo-alvo, de acordo com a seleção de características.	FS, CS, CS+WS, FS+WS, CS+DS, FS+DS, FS+WS+DS, CS+WS+DS, FS+CS+WS+DS	core-set16 docking-set16 screening-set16	dssp34, binana350, padel92, rdkt2d147, rdkt3d11, sasa10, vina58, vina-s1	-LogKd	Random Forest	LassoCV	Manual	Scoring Power Ranking Power Docking Power Screening Power
19	Ajustar os parâmetros dos modelos <i>Random Forest</i> com a ferramenta GridSearchCV, utilizando os atributos do subconjunto selecionado com o LassoCV com melhor desempenho nas métricas do CASF-2016.	FS+CS+WS+DS	core-set16 docking-set16 screening-set16	amino20, dssp34, binana350, padel92, rdkt2d147, rdkt3d11, sasa10, vina58, vina-s1	-LogKd	Random Forest	LassoCV	GridSearchCV	Scoring Power Ranking Power Docking Power Screening Power
20	Ajustar os parâmetros dos modelos <i>Random Forest</i> com a ferramenta GridSearchCV, utilizando todos os atributos gerados.	FS+CS+WS+DS	core-set16 docking-set16 screening-set16	amino20, dssp34, binana350, padel92, rdkt2d147, rdkt3d11, sasa10, vina58, vina-s1	-LogKd	Random Forest	Não	GridSearchCV	Scoring Power Ranking Power Docking Power Screening Power

Tabela 27: Resumo dos experimentos 17 a 20.

A abordagem adotada para desenvolver a função de escore pode ser resumida em quatro pontos: compilar um conjunto de treinamento e teste, escolher um método *machine learning*, selecionar as características mais importantes e otimizar os parâmetros de criação dos modelos. A seguir, cada um dos pontos serão analisados de acordo com os resultados obtidos nos experimentos.

Como quase todos os experimentos utilizaram o CAF-2016, os resultados são comparados de acordo com suas métricas (Tabela 28):

Tabel	Tabela 28: Métricas do CASF-2016.					
ID	Métrica					
Scoring	Scoring Power					
Ranking	Ranking Power					
Docking1	Docking Power					
Docking2	Docking Power (without native pose)					
Screening1	Forward Screening Power					
Screening2	Reverse Screening Power					

Conjunto de dados

Foram avaliados vários conjuntos de complexos proteína-ligante utilizados na literatura, principalmente várias versões do conjunto PDBbind *refined set* (WANG et al., 2004); incluindo o PDBbind *general set* (complexos de baixa afinidade) (WANG et al., 2005), CSAR-NRC HiQ (DUNBAR JR et al., 2011) e os *Decoys* CSAR-NRC HiQ (HUANG; ZOU, 2011). Todos os conjuntos mencionados, cada um deles foram utilizados como dados de treinamento, filtrados apenas pelos valores de K_d ou combinados entre si; com exceção dos complexos do PDBbind *general set* e dos *Decoys* CSAR-NRC HiQ que foram adicionados apenas aos outros grupos. Para o teste, foi utilizado principalmente os conjuntos de dados do CASF-2016 (SU et al., 2018). Antes de criar os modelos, foram excluídos do conjunto de treinamento os complexos comuns com o conjunto de teste. No Anexo B, são encontrados mais detalhes sobre os conjuntos de dados utilizados nos experimentos.

Os experimentos 3 a 10 foram consideradas para analisar os conjuntos de dados, os resultados são apresentados a seguir.

A Figura 13 apresenta uma comparação entre os resultados de três conjuntos de treinamento obtidos no Experimento 7, utilizando o termo de correção ΔpK_d como atributoalvo. O primeiro, FS+WS+CS+DS, composto pelo conjunto PDBbind *refined set* 2018 (FS); complexos de baixa afinidade do PDBbind *general set* 2018 (WS); estruturas cristalográficas de alta qualidade do CSAR-NRC HiQ (CS) e *decoys* selecionados do *Decoys* CSAR-NRC HiQ (DS). O segundo, composto pelos valores de K_d do PDBbind *refined set* 2018 (RS) e *decoys* seletos do *Decoys* CSAR-NRC HiQ (DS). E o terceiro, composto pelos valores de K_d do PDBbind *refined set* 2018 (RS) e complexos de baixa afinidade do PDBbind *general set* 2018 (WS). Dos três conjuntos, pode-se observar que FS+WS+CS+DS conseguiu o desempenho mais equilibrado dos três, obtendo resultados próximos no *Docking Power* ao adicionar apenas *decoys* ao conjunto de treinamento (RS+DS), ou no *Forward Screening Power* ao adicionar complexos de baixa qualidade para treinar os modelos (RS+WS). O número de complexos em cada conjunto de treinamento foi mencionado na Tabela 6 do Capítulo de Metodologia.

Comparativo Conjunto de Dados (ΔpKd)

Figura 13: Comparativo entre três conjuntos de treinamento do Experimento 7, utilizando o termo de correção $\Delta p K_d$ como atributo-alvo.

Resultados semelhantes podem ser vistos no Experimento 8 com os mesmos conjuntos de treinamento (Figura 14). Neste experimento, o termo -LogKd foi utilizado como atributo-alvo. O conjunto de treinamento FS+WS+CS+DS conseguiu o desempenho mais equilibrado dos três.

Figura 14: Comparativo entre três conjuntos de treinamento do Experimento 7, utilizando o valor experimental -LogKd como atributo-alvo.

Cabe ressaltar o acerto de WANG; ZHANG (2017) no uso de complexos variados para compilar seu conjunto de treinamento, pois adicionar *decoys* ou complexos de baixa afinidade poderia melhorar o desempenho da função de escore. As Figuras 15 e 16 mostram uma comparação entre o uso apenas do conjunto PDBbind *refined set* (comumente citado no desenvolvimento de funções de escore) e o uso de um conjunto composto de complexos variados. A Figura 15 é baseada nos resultados obtidos no Experimento 7, utilizando ΔpK_d como atributo-alvo, e a Figura 16 é baseada nos resultados obtidos no Experimento 8, utilizando -LogKd como atributo-alvo.

Figura 15: Comparativo entre dois conjuntos de treinamento do Experimento 7. Como atributo-alvo foi usado ($\Delta p K_d$).

Figura 16: Comparativo entre dois conjuntos de treinamento do Experimento 8. Como atributo-alvo foi usado o valor experimental -LogKd.

Até o momento, as funções de escore baseadas no machine learning tiveram desempenhos fracos nas avaliações CASF (KHAMIS; GOMAA, 2015; SU et al., 2018), especificamente nos testes de *Docking Power* e *Screening Power*. A Figura 17 mostra esse caso em uma comparação entre duas abordagens, -LogKd como atributo-alvo, que é uma medida de afinidade do complexo; e ΔpK_d como atributo-alvo, utilizado como termo de correção para a função de escore de tipo *empirical* do AutoDock Vina (TROTT; OLSON, 2010). A Figura 17 é baseada nos resultados obtidos nos Experimentos 7 e 8.

Figura 17: Comparativo entre o termo de correção ΔpK_d e o valor experimental -LogKd utilizados como atributos-alvo. Os resultados foram obtidos do Experimento 7 e Experimento 8, respectivamente.

Os resultados obtidos com outros conjuntos de treinamento podem ser vistos no Anexo B.

Método machine learning

Foram comparados dois métodos *machine learning*: *Random Forest* e *Gaussian Process*. Devido à variedade de resultados apresentados pelas funções de covariância (definidas na Seção 2.3.2.2) aplicadas nos modelos *Gaussian Process*, foi decidido escolher uma para ser comparada com o *Random Forest*. No Anexo B, podem ser encontrados os resultados de todos os *kernels*.

Os experimentos 1 a 10 foram consideradas para analisar os métodos *machine learning*, os resultados são apresentados a seguir.

De acordo com os resultados semelhantes mostrados nos Experimentos 1-6, Experimento 9 e Experimento 10, foram considerados os três tipos de *kernels* com os desempenhos mais altos: RBF, MATERN e RATIONAL_QUADRATIC. Para apresentar a comparação desses *kernels*, o Experimento 9 (utilizando o valor experimental -LogKdcomo atributo-alvo) e o Experimento 10 (utilizando o termo de correção ΔpK_d como atributo-alvo) foram selecionados, porque mais conjuntos de dados foram testados para treinar os modelos. Devido a um erro de execução encontrado no conjunto de treinamento FS+WS+CS+DS, esses resultados foram descartados e, portanto, foram considerados para a análise: FS, conjunto composto pelo PDBbind *refined set* 2018 (FS); RS+WS, composto pelos valores de K_d do PDBbind *refined set* 2018 (RS) e complexos de baixa afinidade do PDBbind *general set* 2018 (WS); RS+WS, composto pelos valores de K_d do PDBbind *refined set* 2018 (RS) e *decoys* seletos do *Decoys* CSAR-NRC HiQ (DS). A Figura 18, a Figura 19 e a Figura 20 mostram os resultados do Experimento 9 alcançados pelos *kernels*

selecionados utilizando esses conjuntos de dados.

Figura 18: Comparativo entre três conjuntos de treinamento utilizando o kernel RBF. Os resultados foram obtidos do Experimento 9, utilizando o termo de correção $\Delta p K_d$ como atributo alvo.

Figura 19: Comparativo entre três conjuntos de treinamento utilizando o kernel MA-TERN. Os resultados foram obtidos do Experimento 9, utilizando o termo de correção $\Delta p K_d$ como atributo alvo.

Figura 20: Comparativo entre três conjuntos de treinamento utilizando o *kernel* RATIO-NAL_QUADRATIC. Os resultados foram obtidos do Experimento 9, utilizando o termo de correção $\Delta p K_d$ como atributo alvo.

De acordo com os resultados obtidos pelos três *kernels*, pode-se observar que o RBF alcança os melhores demepenhos. No entanto, esse *kernel* possui valores baixos se for treinado usando o valor experimental -LogKd como atributo-alvo. A Figura 21 compara o desempenho do *kernel* RBF, alcançado no Experimento 9 e no Experimento 10, utilizando os dois tipos de atributos-alvo.

Figura 21: Comparativo entre os dois tipos de atributo-alvo utilizando o *kernel* RBF. Os resultados foram obtidos do Experimento 9 (o termo de correção ΔpK_d) e do Experimento 10 (o valor experimental -LogKd).

Como estratégia para melhorar os resultados, as três funções de covariância foram combinadas com o *kernel* WHITE. Esse *kernel* distribui o ruído que pode ser encontrado nos dados de treinamento e que pode afetar os modelos (RASMUSSEN, 2003). A Figura 22, a Figura 23 e a Figura 24 apresentam os resultados utilizando essa abordagem.

Figura 22: Comparativo entre três conjuntos de treinamento utilizando o kernel RBF+WHITE. Os resultados foram obtidos do Experimento 9, utilizando o termo de correção $\Delta p K_d$ como atributo alvo.

Figura 23: Comparativo entre três conjuntos de treinamento utilizando o *kernel* MA-TERN+WHITE. Os resultados foram obtidos do Experimento 9, utilizando o termo de correção $\Delta p K_d$ como atributo alvo.

Figura 24: Comparativo entre três conjuntos de treinamento utilizando o *kernel* RATIO-NAL_QUADRATIC+WHITE. Os resultados foram obtidos do Experimento 9, utilizando o termo de correção $\Delta p K_d$ como atributo alvo.

De acordo com os resultados obtidos, observa-se que as três funções de covariância obtiveram resultados semelhantes quando são combinadas com o *kernel* WHITE. Qualquer um deles pode ser escolhido para ser comparado com o *Random Forest*, razão pela qual foi considerado o RBF por ser um *kernel* muito citado na literatura (GHARAGHANI; KHAYAMIAN; KESHAVARZ, 2012; KUNDU; PAUL; BANERJEE, 2018). Para finalizar, na Figura 25, pode ser visto como essa combinação melhora em todas as métricas utilizando o valor experimental -LogKd como atributo-alvo (resultados obtidos no Experimento 9 e no Experimento 10).

Figura 25: Comparativo entre os dois tipos de atributo-alvo utilizando o *kernel* RBF+WHITE. Os resultados foram obtidos do Experimento 9 (o termo de correção ΔpK_d) e do Experimento 10 (o valor experimental -LogKd).

Levando em consideração os resultados obtidos, o *kernel* combinado RBF+WHITE e o conjunto de dados FS foram escolhidos para comparar os métodos *Gaussian Process*

e *Random Forest*. Para isso, eles foram contrastados utilizando três tipos de conjuntos de características: atributos geométricos (Figura 26, com base nos resultados do experimento 1) (KHAMIS; GOMAA, 2015), atributos do SFCscore (ZILIAN; SOTRIFFER, 2013) (Figura 27, com base nos resultados do experimento 2) e atributos do DeltaVinaRF20 (WANG; ZHANG, 2017) (Figura 28, com base nos resultados obtidos nos experimentos 7 e 9), utilizando o termo de correção ΔpK_d como atributo-alvo. Nas três análises, o *Random Forest* obteve melhor desempenho, no único experimento em que o *Gaussian Process* atingiu um desempenho similar ao *Random Forest*, foi com atributos do DeltaVinaRF20 (Figura 28).

Figura 26: Comparativo entre os métodos *Gaussian Process* e *Random Forest* utilizando atributos geométricos. Os resultados foram obtidos do Experimento 1. Adaptado de: KHAMIS; GOMAA (2015).

Figura 27: Comparativo entre os métodos *Gaussian Process* e *Random Forest* utilizando atributos do SFCscore. Os resultados foram obtidos do Experimento 2. Adaptado de: ZILIAN; SOTRIFFER (2013).

Figura 28: Comparativo entre os métodos *Gaussian Process* e *Random Forest* utilizando atributos do DeltaVinaRF20 e o termo de correção ΔpK_d como atributo-alvo. Os resultados foram obtidos do Experimentos 7 (*Random Forest*) e do Experimentos 9 (*Gaussian Process*).

Outra diferença na perfomance entre os métodos *Gaussian Process* e *Random Forest* também pode ser observada com os *features* do DeltaVinaRF20, utilizando -LogKd como atributo-alvo (Figura 29, com base nos resultados obtidos nos experimentos 8 e 10). O *Random Forest* alcançou melhores desempenhos em quase todos os pontos.

Figura 29: Comparativo entre os métodos *Gaussian Process* e *Random Forest* utilizando atributos do DeltaVinaRF20 e o valor experimental -LogKd como atributo-alvo. Os resultados foram obtidos do Experimentos 8 (*Random Forest*) e do Experimentos 10 (*Gaussian Process*).

De acordo com as comparações entre os dois métodos, o *Random Forest* foi escolhido para a próxima etapa do desenvolvimento da função de escore, também porque foram utilizados mais conjuntos de características e os modelos *Gaussian Process* perdem eficiência quando são treinados com dezenas de atributos (SEEGER, 2004) e são mais lentos para ser criados.

Outros resultados utilizando os métodos *Gaussian Process* e *Random Forest* podem ser encontrados no Anexo B.

Seleção de atributos

Foram incluídos novos conjuntos de atributos: termos da área de superfície acessível pelo solvente (DURHAM et al., 2009); percentagens de aminoácidos das proteínas (JO-NES; THORNTON, 1996); informação da estrutura secundária das proteínas (KUNDU; PAUL; BANERJEE, 2018); características dos ligantes gerados com PaDEL Descriptors (YAP, 2011); descritores utilzados no NNSCORE 2.0 (DURRANT; MCCAMMON, 2011b); atributos 2D e 3D das moléculas geradas com RDKit (LANDRUM, 2013); e os termos gerados para o AutoDock Vina, incluindo a pontuação de afinidade calculada por sua função de escore (TROTT; OLSON, 2010). Como conjunto de treinamento foi utilizado uma compilação formada por: PDBbind *refined set* (WANG et al., 2004); complexos selecionados de baixa afinidade do PDBbind *general set* (WANG et al., 2005); estruturas cristalográficas de alta qualidade de CSAR-NRC HiQ (DUNBAR JR et al., 2011); e um conjunto de atributos importantes, foi utilizado o método LassoCV (FONTI; BELIT-SER, 2017). Os modelos preditivos foram criados utilizando o método *Random Forest*.

Os experimentos 11 a 14 foram consideradas para analisar os atributos mais importantes, os resultados são apresentados a seguir.

Antes da seleção dos atributos mais importantes, o desempenho da função de escore foi calculado se todos os atributos fossem utilizados. A Figura 30 compara os resultados obtidos pelos modelos treinados com os atributos utilizados DeltaVinaRF20 (Experimento 7), os modelos treinados com todos os atributos e não incluem o escore do Auto-Dock Vina (Experimento 11), e os modelos treinados com todos os atributos e incluem o escore do AutoDock Vina (Experimento 14). Pode-se observar que os modelos com os novos conjuntos de atributos tiveram melhores desempenhos nas métricas de *Scoring Power* e *Ranking Power*. Também é importante notar que a inclusão do escore do AutoDock Vina como atributo permite melhorar as métricas de *Docking Power* e *Screening Power*. E por último, mas não menos importante, deve-se ressaltar que o experimento 7 prevê um termo de correção utilizado para melhorar o escore do AutoDock Vina, enquanto os experimentos 11 e 14 calculam o valor de afinidade.

Figura 30: Comparativo entre três conjuntos de características: atributos do DeltaVinaRF20 (Experimento 7); todos os atributos estudados sem incluir o escore do AutoDock Vina (Experimento 11); e todos os atributos estudados, incluindo o escore do AutoDock Vina (Experimento 14). O Experimento 7 prevê $\Delta p K_d$, enquanto os experimentos 11 e 14 calculam -LogKd.

A Figura 31 compara os experimentos 10 e 14, ambos têm -LogKd como atributoalvo. Ressalte-se a grande diferença no desempenho do *Docking Power* quando o escore do AutoDock Vina é utilizado como um atributo, também observe-se o aumento no desempenho do *Screening Power*; essas duas métricas são mencionadas como os pontos mais fracos das funções de escore baseadas em *machine learning* alcançadas nos testes do CASF (KHAMIS; GOMAA, 2015; SU et al., 2018). Portanto, de acordo com os resultados mostrados, o escore do AutoDock Vina foi considerado como um atributo importante para o conjunto de treinamento.

Figura 31: Comparativo entre os desempenhos do Experimento 10 (atributos DeltaVinaRF20) e do Experimento 14 (todos os atributos, incluindo o escore do AutoDock Vina). Os dois experimentos prevêem o valor experimental -LogKd.

Os pesos dos atributos foram calculados utilizando o LASSO. Das 723 características propostas, 308 foram relevantes para o atributo-alvo (o valor experimental -LogKd). Os pesos dos primeiros 250 atributos podem ser vistos nas seguintes figuras: Figura 32 (apresenta os pesos dos atributos mais importantes de 1 a 50), Figura 33 (apresenta os pesos dos atributos mais importantes de 51 a 100), Figura 34 (apresenta os pesos dos atributos mais importantes de 101, Figura 35 (apresenta os pesos dos atributos mais importantes de 151 a 200) e Figura 36 (apresenta os pesos dos atributos mais importantes de 201 a 250). Devido a seus valores muito pequenos, os atributos de 251 a 308 não foram incluídos nas figuras, mas o conjunto completo das características mais importantes, juntamente com seus pesos, estão listados na Tabela 249 do Anexo C.

Pesos dos atributos calculados com LASSO (1-50)

Figura 32: Pesos dos atributos calculados pelo LASSO (1-50).

Pesos dos atributos calculados com LASSO (51-100)

Figura 33: Pesos dos atributos calculados pelo LASSO (51-100).

Pesos dos atributos calculados com LASSO (101-150)

Figura 34: Pesos dos atributos calculados pelo LASSO (101-150).

Pesos dos atributos calculados com LASSO (151-200)

Figura 35: Pesos dos atributos calculados pelo LASSO (151-200).

VSA_EState9 0.00788 NN115 0.00773 NN29 0.007 VSA_EState8 0.00692 F4 0.00672 EState_VSA4 0.0064 EState_VSA8 0.00627 NN227 0.00623 D8 0.00592 D15 0.00547 PEOE_VSA8 0.00544 nF9HeteroRing 0.00537 0.00529 F53 SlogP_VSA3 0.00524 PEOE_VSA10 0.00523 F5 0.00496 NN23 0.00493 nT10Ring 0.00479 SlogP_VSA4 0.00469 S1 0.00451 PEOE_VSA5 0.00449 S4 0.00321 S9 0.00303 PEOE_VSA4 0.00278 NN51 0.00277 SlogP_VSA11 0.00264 NN14 0.00259 F7 0.0025 NN6 0.00249 NN52 0.00233 NPR2 0.00229 VSA_EState2 0.00202 NN344 0.002 nT9HeteroRing 0.0019 EState_VSA2 0.00183 NN15 0.00182 PEOE_VSA6 0.00173 SMR_VSA5 0.00156 F47 0.00149 S3 0.00144 SMR_VSA7 0.00143 F10 0.0014 NN7 0.00135 D12 0.00133

Pesos dos atributos calculados com LASSO (201-250)

Figura 36: Pesos dos atributos calculados pelo LASSO (201-250).

2.0

peso

2.5

3.0

3.5

4.0

1.5

0.0

0.5

1.0

Depois que os pesos dos atributos foram calculados e classificados, eles foram agrupados nos seguintes números característicos do maior para o menor: 50, 100, 150, 200, 250, 300, 400, 500, 600, 723. Os atributos de peso zero também foram incluídos para analisar se eles afetam a performance dos modelos. Os desempenhos mais equilibrados foram alcançados com 250 características, acima desse valor as performances diminuem novamente. A Figura 37 mostra os resultados obtidos para as quantidades 50, 250 e 723. Os demais números de atributos podem ser vistos no Anexo B.

Figura 37: Comparativo entre três conjuntos de atributos (50, 250, 723), classificados por seus pesos do mais alto para o mais baixo. Os pesos das características foram calculados com o LASSO.

Note-se que, de acordo com a classificação dos pesos dos atributos (Tabela 249 do Anexo C), os mais significativos em relação ao valor de afinidade são principalmente o grupo de porcentagens de aminoácidos que ocupam os primeiros lugares, seguidos pelos *features* de interação proteína-ligante do NNScore 2.0, incluindo entre eles, o escore e alguns termos do AutoDock Vina, os outros grupos de atributos têm menos importância no relação com o atributo-alvo.

Para concluir a análise da seleção de atributos, a Figura 38 mostra a evolução dos modelos *Random Forest*. Os experimentos 7 e 8 foram treinados com os atributos de DeltaVinaRF20, o primeiro calculando o termo de correção ΔpK_d e o segundo -LogKd; enquanto, o experimento 14 foi treinado com novos *features*, excluindo os menos importantes e -LogKd como atributos alvo. Os resultados mostram que a inclusão de novas características (Experimento 14) melhorou o desempenho no *Scoring Power* e *Ranking Power* (Experimento 14 vs. Experimentos 7 e 8), também que o escore do AutoDock Vina como um atributo de entrada aumenta significativamente o desempenho em *Docking Power* e *Screening Power* (Experimento 14 vs. Experimento 14 vs. Experimento 8) utilizando -LogKd como

atributo-alvo.

Figura 38: Evolução dos modelos *Random Forest* aplicando a metodologia proposta nesta dissertação. Os experimentos 7 e 8 foram treinados com os atributos do DeltaVinaRF20, o primeiro calculando o termo de correção ΔpK_d e o segundo -LogKd, enquanto, o experimento 14 foi treinado com os 250 mais importantes calculado pelo LASSO e -LogKd como atributos alvo.

Otimização do modelo

Até aqui, todos os modelos *Random Forest* foram treinados, indicando apenas o número de árvores na floresta e mantendo a configuração do WANG; ZHANG (2017) utilizado na sua abordagem. Portanto, para melhorar ainda mais o desenvolvimento da função de escore, foram aplicadas duas técnicas de ajuste de hiperparâmetros. A primeira técnica aplicada foi o ajuste manual, que consistiu em criar várias instâncias, modificando os valores de **n_estimators** (número de árvores na floresta) e **max_depth** (profundidade máxima da árvore), até obter o melhor desempenho. A segunda técnica consistiu em aplicar o ajuste automático do Skicit-learn, por meio do GridSearchCV, que procura exaustivamente candidatos usando diferentes tipos de combinações de parâmetros, juntamente com a validação cruzada (KRAMER, 2016); para esse processo, foram utilizados os parâmetros **n_estimators** e **max_features** (número de características a serem consideradas). O conjunto de dados e as características utilizadas foram os mesmos do modelo preditivo com o melhor desempenho alcançado na análise da seleção de atributos.

Os experimentos 15 a 20 foram consideradas para analisar a configuração dos hiperparâmetros, os resultados são apresentados a seguir.

A Figura 39 mostra uma comparação entre o desempenho do modelo preditivo sem ajustar os parâmetros (Experimento 14) e o melhor desempenho atingido com os

parâmetros ajustados manualmente (Experimento 16). Observa-se que, apesar do treinamento das funções de escore utilizando diferentes combinações de parâmetros, não foi possível melhorar o desempenho. Os resultados de todas as combinações dos parâmetros são encontrados no Anexo B.

Figura 39: Comparativo entre os modelos preditivo sem ajustar os parâmetros (Experimento 14) e o melhor desempenho atingido com os parâmetros ajustados manualmente (Experimento 16) através de diferentes combinações.

A Figura 40 compara o desempenho da função de escore sem ajustar os parâmetros e o desempenho obtido aplicando o GridSearchCV para ajustar os modelos. Observa-se uma leve melhoria no *Scoring Power*, *Ranking Power* e *Screening Power*, portanto, esses parâmetros serão considerados para o treinamento da função de escore.

Figura 40: Comparativo entre os modelos preditivos sem ajustar os parâmetros (Experimento 14) e com os parâmetros ajustados automáticamente (Experimento 19), utilizando o GridSearchCV. Foi realizada uma análise final das combinações de hiperparâmetros, aplicando o ajuste automático aos modelos treinados com todas as características. A Figura 41 compara o estudo da configuração dos hiperparâmetros com 250 atributos e com 723 atributos. Observa-se que o modelo com melhor desempenho foi o treinado com as 250 características mais importantes calculadas na análise da seleção de atributos.

Figura 41: Comparativo entre os desempenhos do Experimento 19 (aplicando seleção de atributos e otimização de parâmetros) e do Experimento 20 (aplicação apenas otimização de parâmetros).

Avaliação no CASF-2016

Foi selecionado ao experimento 19 como o modelo com o melhor resultado atingido, empregando toda a metodologia estudada nesta dissertação (Figura 42), que consistiu na compilação de um conjunto de treinamento, na aplicação de um método *machine learning* para treinar a função de escore, no estudo de diferentes tipos de atributos e seleção dos mais importantes utilizados como dados de entrada e na otimização do modelo preditivo através do ajuste de seus hiperparâmetros. Para avaliar o desempenho do modelo preditivo, foi selecionado o *benchmark* CASF-2016, que através de conjuntos de testes e quatro métricas (*scoring power, ranking power, docking power, screening power*) calculam a perfomance da função de escore.

Figura 42: Metodologia aplicada no Experimento 19.

Como conjunto de treinamento, foram combinados o PDBbind *refined set*, os complexos de baixa afinidade do PDBbind *general set*, os complexos de alta qualidade do CSAR-NRC HiQ e os *decoys* do *Decoys* CSAR-NRC HiQ. Como conjuntos de teste foram utilizados o PDBbind *core set*, o CASF-2016 *docking set* e o CASF-2016 *screening set* usados para calcular sus metricas. Os tamanhos de cada um dos conjuntos são listados na Tabela 29.

	Conjunto	ID	Tamanho
		refined-set18B	4463
Tra	Trainamento	weak-set18	467
	mennenno	csar-nrc-hiq-set	343
		csar-decoys-all-set11	3773
		core-set16	285
Te	Teste	docking-set16	28500
		screening-set16	1624500

Tabela 29: Experimento 19 - Conjuntos de Treinamento e Teste.

Como atributos de entrada foram utilizados: percentagens de aminoácidos das proteínas; informações da estrutura secundária das proteínas; descritores utilzados no NNSCORE 2.0; características dos ligantes gerados com PaDEL Descriptors; atributos 2D e 3D das moléculas geradas com RDKit; termos da área de superfície acessível pelo solvente; e os termos gerados para o AutoDock Vina, incluindo a pontuação de afinidade calculada por sua função de escore. Todos os atributos foram estudados e dos quais os mais importantes foram selecionados como dados de entrada para treinar a função de escore. A Tabela 30 indica as quantidades de cada grupo de atributos.

ID	Tamanho
amino20	20
dssp34	34
binana350	350
padel92	92
rdkt2d147	147
rdkt3d11	11
sasa10	10
vina58	58
vina-s1	1

Tabela 30: Experimento 19 - Descritores.

Como atributo-alvo para treinar a função de escore, foi selecionado o valor experimental da afinidade do complexo proteína-ligante:

$$score = -LogKd$$
 (14)

A configuração do método LassoCV utilizado para calcular os atributos mais importantes é definido na Tabela 31.

Método	Parâmetros	Nro. Atributos
	repeats $= 10$	• • •
LassoCV	$n_{splits} = 10$	250
	$test_size = 0.1$	

Tabela 31: Experimento 19 - Configuração da seleção de atributos.

A configuração do GridSearchCV utilizado para ajustar os hiperparâmetros do modelo preditivo é definido na Tabela 32.

14001	Tubbla 52: Experimente 17 Comgaração do Ortabeareno 11						
Método	Parâmetros	max_features	n_estimators				
	cv = 2	Index = $[25, 50, 75, 100,$	Index = [100, 200, 300,				
GridSearchCV	$n_jobs = -1$	125, 150, 175,	400, 500, 600,				
	verbose = 2	200, 225, 250]	700, 800, 900, 1000]				

Tabela 32: Experimento 19 - Configuração do GridSearchCV.

A configuração do modelo preditivo utilizado como função de escore é definida na Tabela 33.

Tabela 33: E	Experimento	19 -	Configuraç	ão do	modelo	preditivo.
	1		U ,			1

Método	ID	Treino	Parâmetros	Nro. Iterações
Random Forest	EXPERIMENTO_19	refined-set18B		
		+csar-nrc-hiq-set	max_features: 75	10
		+weak-set18	n_estimators: 400	10
		+csar-decoys-all-set11		

Para ser comparado o modelo preditivo proposto com as outras funções de escore do CASF-2016 (SU et al., 2018), o ele foi criado e avaliado sua perfomance dez vezes, de modo que a média de seus resultados foram calculadas para a comparação. Cada métrica foi analisada individualmente e, finalmente, o desempenho geral da função de pontuação proposta foi avaliado. Os resultados são descritos a seguir.

No teste de *Scoring Power*, de acordo com os resultados apresentados na Figura 43 e na Tabela 34, o modelo proposto atinge um coeficiente de *Pearson* de 0.81, superior ao 0.63 considerado como pouco promissor pelo SU et al. (2018), igualando o desempenho do Δ VinaRF20, com o qual ele compartilha o primeiro lugar na classificação em comparação com as restantes funções de escore avaliadas no CASF-2016. Essa métrica foi aprimorada quando as características da proteína e do ligante foram incluídas como dados de entrada, sendo que algumas delas têm uma relação maior com o atributo-alvo de acordo com seus pesos calculados com o LASSO (Tabela 249 do Anexo C).

Figura 43: Comparativo da função de escore proposta com outras funções de escore do CASF-2016 no teste de *Scoring Power*. O modelo proposto atingiu um coeficiente de *Pearson* entre as afinidades previstas e as afinidades medidas experimentalmente de 0.81. Adaptado de: SU et al. (2018).

scoring function	Rank	Ň	R	SD
Δ VinaRF20	1	285	0.816	1.26
EXPERIMENTO_19	2	285	0.8112	1.273
X-Score	3	285	0.631	1.69
X-ScoreHS	4	285	0.629	1.69
Δ SAS	5	285	0.625	1.7
X-ScoreHP	6	285	0.621	1.7
ASP@GOLD	7	282	0.617	1.71
ChemPLP@GOLD	8	281	0.614	1.72
X-ScoreHM	9	285	0.609	1.73
AutodockVina	10	285	0.604	1.73
DrugScore2018	11	285	0.602	1.74
DrugScoreCSD	12	285	0.596	1.75
ASE@MOE	13	285	0.591	1.75
ChemScore@SYBYL	14	285	0.59	1.76
PLP1@DS	15	285	0.581	1.77
ChemScore@GOLD	16	279	0.574	1.78
G-Score@SYBYL	17	284	0.572	1.79
Alpha-HB@MOE	18	285	0.569	1.79
PLP2@DS	19	285	0.563	1.8
Affinity-dG@MOE	20	285	0.552	1.81
LigScore2@DS	21	285	0.54	1.83
D-Score@SYBYL	22	284	0.531	1.84
LUDI2@DS	23	285	0.526	1.85
GlideScore-SP	24	258	0.513	1.89
LUDI3@DS	25	285	0.502	1.88
GBVI/WSA-dG@MOE	26	271	0.496	1.91
LUDI1@DS	27	284	0.494	1.88
GlideScore-XP	28	252	0.467	1.95
Jain@DS	29	279	0.457	1.89
LigScore1@DS	30	285	0.425	1.97
PMF@DS	31	282	0.422	1.97
GoldScore@GOLD	32	244	0.416	1.99
London-dG@MOE	33	285	0.405	1.99
PMF@SYBYL	34	279	0.262	2.09
PMF04@DS	35	263	0.212	2.11

Tabela 34: Experimento 19 - Comparação com outras funcões de escore do CASF-2016no teste do Scoring Power. Adaptado de:SU et al. (2018).

No teste de *Ranking Power*, de acordo com os resultados apresentados na Figura 44 e na Tabela 35, o modelo proposto atinge um coeficiente de *Spearman* de 0.66, superior ao valor 0.5 considerado como regular por CROUX; DEHON (2010); SEDGWICK (2014), inferior ao valor mais alto obtido pelo Δ VinaRF20, no entanto, ele conseguiu o segundo lugar da classificação do CASF-2016. Segundo SU et al. (2018), essa métrica está relacionada ao *Scoring Power*; portanto, o desempenho da capacidade da função de escore para prever afinidades de ligação influenciou a melhoria desse ponto.

Figura 44: Comparativo da função de escore proposta com outras funções de escore do CASF-2016 no teste de *Ranking Power*. O modelo proposto atingiu um coeficiente de correlação de *Spearman* entre a classificação, com base nos valores de afinidade previstos e os valores medidos experimentalmente de 0.66. Adaptado de: SU et al. (2018).
scoring function	Rank	SP	tau	PI
Δ VinaRF20	1	0.75	0.685	0.760
EXPERIMENTO_19	2	0.6684	0.582	0.699
ChemPLP@GOLD	3	0.633	0.537	0.657
DrugScoreCSD	4	0.63	0.544	0.662
LUDI2@DS	5	0.629	0.542	0.657
LUDI1@DS	6	0.612	0.534	0.64
LigScore2@DS	7	0.608	0.521	0.62
DrugScore2018	8	0.607	0.53	0.637
X-Score	9	0.604	0.529	0.638
Affinity-dG@MOE	10	0.604	0.519	0.619
X-ScoreHM	11	0.603	0.522	0.640
LigScore1@DS	12	0.599	0.523	0.606
ChemScore@SYBYL	13	0.593	0.53	0.617
London-dG@MOE	14	0.593	0.526	0.609
G-Score@SYBYL	15	0.591	0.526	0.609
PLP2@DS	16	0.589	0.512	0.617
Δ SAS	17	0.588	0.498	0.612
PLP1@DS	18	0.582	0.509	0.605
D-Score@SYBYL	19	0.577	0.516	0.598
X-ScoreHP	20	0.573	0.508	0.607
ASP@GOLD	21	0.552	0.474	0.582
X-ScoreHS	22	0.547	0.469	0.577
PMF@DS	23	0.537	0.47	0.558
Alpha-HB@MOE	24	0.535	0.477	0.557
LUDI3@DS	25	0.532	0.449	0.564
AutodockVina	26	0.528	0.452	0.557
ChemScore@GOLD	27	0.526	0.46	0.557
Jain@DS	28	0.521	0.447	0.545
GBVI/WSA-dG@MOE	29	0.489	0.421	0.504
PMF04@DS	30	0.481	0.386	0.497
PMF@SYBYL	31	0.449	0.379	0.478
ASE@MOE	32	0.439	0.372	0.466
GlideScore-SP	33	0.419	0.374	0.425
GoldScore@GOLD	34	0.284	0.242	0.283
GlideScore-XP	35	0.257	0.226	0.255

Tabela 35: Experimento 19 - Comparação com outras funcões de escore do CASF-2016 no teste do *Ranking Power*. Adaptado de: SU et al. (2018).

No teste de *Docking Power*, de acordo com os resultados apresentados na Figura 45 e na Tabela 36 o modelo proposto alcançou uma taxa de sucesso de 86% para identificar ligantes nativos no primeiro lugar da classificação de poses de ligação (*binding poses*), superior ao 70% considerado como promissor pelo SU et al. (2018), obtendo o sexto lugar do CASF-2016. Essa métrica teve uma melhoria notável quando o escore do AutoDock Vina foi incluída como um atributo mais de entrada.

Figura 45: Comparativo da função de escore proposta com outras funções de escore do CASF-2016 no teste de *Docking Power*. O modelo proposto alcançou uma taxa de sucesso de 86% para identificar a melhor pose de união com RMSD abaixo de 2 Å da pose nativa. Adaptado de: SU et al. (2018).

scoring_function	Rank	TOP1	TOP2	TOP3
AutodockVina	1	90.2	95.8	97.2
Δ VinaRF20	2	89.1	94.4	96.5
GlideScore-SP	3	87.7	91.9	93.7
DrugScoreCSD	4	87.4	93.3	95.1
GBVI/WSA-dG@MOE	5	87.0	91.9	93.3
EXPERIMENTO_19	6	86.08	92.76	95.1
ChemPLP@GOLD	7	86.0	93.7	96.1
LigScore2@DS	8	85.6	93.3	96.5
GlideScore-XP	9	83.9	90.2	94.4
DrugScore2018	10	83.5	89.5	94.0
PLP1@DS	11	82.8	90.5	94.0
ASP@GOLD	12	81.1	88.4	93.0
ChemScore@GOLD	13	80.4	86.0	90.9
PLP2@DS	14	79.3	88.4	92.3
LigScore1@DS	15	76.8	86.0	89.5
GoldScore@GOLD	16	75.1	86.3	90.5
Alpha-HB@MOE	17	71.6	81.1	85.3
X-ScoreHM	18	65.3	77.9	83.5
Affinity-dG@MOE	19	63.5	76.1	83.9
LUDI2@DS	20	63.5	75.1	80.4
X-Score	21	63.5	74.0	80.4
London-dG@MOE	22	63.2	78.2	83.9
LUDI1@DS	23	63.2	73.7	81.1
X-ScoreHS	24	59.6	72.3	78.6
ChemScore@SYBYL	25	57.9	68.8	77.2
X-ScoreHP	26	56.1	67.7	75.1
Jain@DS	27	55.8	67.4	75.8
LUDI3@DS	28	53.0	63.2	71.9
ASE@MOE	29	50.5	60.7	67.0
PMF@SYBYL	30	47.7	57.9	65.3
PMF04@DS	31	46.3	54.0	59.6
G-Score@SYBYL	32	44.2	59.6	69.1
PMF@DS	33	42.8	51.9	58.6
Δ SAS	34	30.2	44.6	51.6
D-Score@SYBYL	35	26.0	40.0	51.9

Tabela 36: Experimento 19 - Comparação com outras funcões de escore do CASF-2016 no teste do *Docking Power*. Adaptado de: SU et al. (2018).

Sem considerar a pose nativa, de acordo com os resultados apresentados na Figura 46 e na Tabela 37, o modelo atingiu 83% para identificar a *binding pose* com o RMSD mais baixo, melhorando sua classificação no CASF-2016, colocando-se no quarto lugar (consulte o Anexo B, Tabela 37 para ver os demais resultados).

Figura 46: Comparativo da função de escore proposta com outras funções de escore do CASF-2016 no teste de *Docking Power (without native pose)*. O modelo proposto atingiu uma taxa de sucesso de 83.8%. Adaptado de: SU et al. (2018).

scoring function	Rank	TOP1	TOP2	TOP3
$\Delta VinaRF20$	1	84.9	91.6	93.3
GlideScore-SP	2	84.6	90.5	92.6
AutodockVina	3	84.6	90.2	92.6
EXPERIMENTO_19	4	83.86	90.35	93.5
ChemPLP@GOLD	5	83.2	90.5	93.3
GBVI/WSA-dG@MOE	6	82.1	88.4	91.6
GlideScore-XP	7	81.8	89.5	93.0
PLP1@DS	8	81.1	88.4	91.6
LigScore2@DS	9	80.4	91.2	94.4
DrugScoreCSD	10	80.4	89.5	91.9
DrugScore2018	11	79.3	86.3	92.3
ChemScore@GOLD	12	79.3	85.6	90.2
ASP@GOLD	13	78.9	85.6	90.5
PLP2@DS	14	77.2	87.4	91.6
GoldScore@GOLD	15	74.7	86.3	90.5
LigScore1@DS	16	74.0	83.2	87.7
Alpha-HB@MOE	17	70.5	80.4	84.6
X-ScoreHM	18	65.6	77.5	83.2
X-Score	19	63.5	73.3	79.6
LUDI2@DS	20	63.2	74.0	80.4
London-dG@MOE	21	62.1	77.2	83.5
Affinity-dG@MOE	22	62.1	75.1	81.8
LUDI1@DS	23	61.8	73.7	80.7
X-ScoreHS	24	59.3	70.9	77.5
ChemScore@SYBYL	25	57.2	68.4	76.5
X-ScoreHP	26	55.4	67.0	74.7
Jain@DS	27	55.1	67.4	75.8
LUDI3@DS	28	52.6	63.2	71.2
ASE@MOE	29	49.8	59.3	65.3
PMF@SYBYL	30	47.7	56.5	63.9
PMF04@DS	31	44.6	52.6	58.2
G-Score@SYBYL	32	44.2	59.6	69.1
PMF@DS	33	42.1	51.2	57.5
ΔSAS	34	30.2	44.2	51.9
D-Score@SYBYL	35	26.0	40.0	51.9

Tabela 37: Experimento 19 - Comparação com outras funcões de escore do CASF-2016 no teste do *Docking Power (without native pose)*. Adaptado de: SU et al. (2018).

No teste de *Forward Screening Power*, de acordo com os resultados apresentados na Figura 47 e na Tabela 38, o modelo proposto alcançou uma taxa de sucesso de 26% para identificar ligantes ativos entre moléculas aleatórias no Top1% da classificação pelas afinidades, obtendo o quarto lugar, longe do 42% atingido pelo Δ VinaRF20 na classificação do CASF-2016 (consulte o Anexo B, Tabela 38). Essa métrica também foi aprimorada ao incluir o escore do AutoDock Vina, mas pode ser considerado como ponto fraco da função de escore proposta.

Figura 47: Comparativo da função de escore proposta com outras funções de escore do CASF-2016 no teste de *Forward Screening Power*. O modelo proposto obteve uma taxa de sucesso de 26.5% para identificar ligantes ativos entre moléculas aleatórias para uma proteína alvo no top 1% da classificação. Adaptado de: SU et al. (2018).

e do Forwara Screening	S Forward Screening Power. Adaptado de: SU et al. (2018).						
scoring function	Rank	TOP1	TOP5	TOP10	EF1	EF5	EF10
Δ VinaRF20	1	42.1	49.1	54.4	11.73	4.43	3.1
GlideScore-SP	2	36.8	54.4	63.2	11.44	5.83	3.98
ChemPLP@GOLD	3	35.1	61.4	64.9	11.91	5.29	3.59
AutodockVina	4	29.8	40.4	50.9	7.7	4.01	2.87
ChemScore@GOLD	5	28.1	45.6	57.9	8.65	3.95	2.92
EXPERIMENTO_19	6	26.5	47.01	55.61	8.50	4.233	2.774
GBVI/WSA-dG@MOE	7	26.3	45.6	59.6	7.62	3.61	2.77
GlideScore-XP	8	26.3	45.6	52.6	8.83	4.75	3.51
LigScore2@DS	9	26.3	42.1	50.9	6.82	3.53	2.84
ASP@GOLD	10	22.8	49.1	68.4	6.98	3.95	3.1
LigScore1@DS	11	22.8	36.8	49.1	6.32	3.68	2.74
DrugScoreCSD	12	22.8	33.3	49.1	5.9	2.97	2.54
Affinity-dG@MOE	13	19.3	43.9	50.9	5.07	2.77	2.26
GoldScore@GOLD	14	15.8	35.1	42.1	4.27	2.86	1.98
PLP1@DS	15	15.8	31.6	45.6	3.98	2.88	2.39
DrugScore2018	16	15.8	31.6	38.6	3.66	2.25	1.89
LUDI1@DS	17	14.0	29.8	42.1	3.1	2.14	1.81
PMF@DS	18	14.0	26.3	40.4	3.76	1.76	1.59
PMF04@DS	19	14.0	19.3	33.3	3.17	1.68	1.75
LUDI2@DS	20	10.5	28.1	40.4	2.34	2.0	1.63
PLP2@DS	21	8.8	29.8	52.6	1.81	2.43	2.49
Alpha-HB@MOE	22	8.8	21.1	40.4	1.7	1.65	2.02
X-ScoreHM	23	8.8	19.3	31.6	3.21	1.39	1.31
London-dG@MOE	24	7.0	26.3	42.1	2.05	2.3	2.09
PMF@SYBYL	25	7.0	19.3	28.1	1.46	1.77	1.68
Jain@DS	26	7.0	15.8	33.3	1.35	1.31	1.56
X-Score	27	7.0	15.8	28.1	2.68	1.31	1.23
LUDI3@DS	28	7.0	14.0	33.3	1.85	1.15	1.4
ASE@MOE	29	7.0	12.3	28.1	1.44	1.11	1.28
D-Score@SYBYL	30	5.3	17.5	26.3	1.24	1.65	1.34
Δ SAS	31	5.3	14.0	24.6	1.76	1.12	1.15
X-ScoreHS	32	5.3	12.3	28.1	2.17	1.26	1.26
X-ScoreHP	33	3.5	17.5	29.8	1.79	1.54	1.13
G-Score@SYBYL	34	3.5	12.3	26.3	0.89	1.06	1.11
ChemScore@SYBYL	35	1.8	15.8	31.6	0.79	1.26	1.41

Tabela 38: Experimento 19 - Comparação com outras funcões de escore do CASF-2016 no teste do *Forward Screening Power*. Adaptado de: SU et al. (2018).

No teste de *Reverse Screening Power*, de acordo com os resultados apresentados na Figura 48 e na Tabela 39, o modelo proposto alcançou uma taxa de sucesso de 18% para identificar proteínas alvo potenciais no Top1% da classificação pelas afinidades, obtendo o primeiro lugar da classificação do CASF-2016 (consultar o Anexo B, Tabela 39).

Figura 48: Comparativo da função de escore proposta com outras funções de escore do CASF-2016 no teste de *Reverse Screening Power*. O modelo proposto alcançou uma taxa de sucesso de 18.5% para identificar proteínas-alvo potenciais para um ligante específico no top 1% da classificação. Adaptado de: SU et al. (2018).

	Denl			(2010)
scoring function	Kank	1001	10P5	10P10
experiment_250	1	18.54	27.72	35.67
ChemPLP@GOLD	2	17.5	29.1	41.1
GlideScore-SP	3	16.5	27.0	37.5
DrugScoreCSD	4	15.4	23.9	33.0
Δ VinaRF20	5	15.1	24.9	31.6
DrugScore2018	6	14.7	21.8	28.8
ChemScore@GOLD	7	14.4	27.7	39.6
GlideScore-XP	8	14.4	23.5	34.7
GoldScore@GOLD	9	14.0	26.0	34.0
AutodockVina	10	13.7	22.8	31.2
PLP2@DS	11	13.7	22.5	30.2
PLP1@DS	12	13.7	22.1	30.2
GBVI/WSA-dG@MOE	13	13.3	23.9	34.7
LigScore1@DS	14	12.6	21.1	30.9
Alpha-HB@MOE	15	11.9	18.6	31.2
LigScore2@DS	16	11.2	17.5	29.5
ASP@GOLD	17	10.9	22.5	31.9
Affinity-dG@MOE	18	10.2	19.3	25.6
LUDI1@DS	19	7.7	15.1	24.2
X-ScoreHS	20	7.0	13.3	18.2
X-ScoreHP	21	6.7	11.2	17.9
LUDI2@DS	22	6.0	14.7	22.5
X-ScoreHM	23	6.0	14.4	23.2
ChemScore@SYBYL	24	6.0	12.3	19.6
Jain@DS	25	6.0	11.6	17.2
X-Score	26	5.6	12.3	19.3
London-dG@MOE	27	5.6	11.2	19.6
ASE@MOE	28	5.3	10.2	16.5
G-Score@SYBYL	29	3.9	11.2	16.8
LUDI3@DS	30	3.2	7.4	13.7
PMF@DS	31	2.8	8.1	12.6
ΔSAS	32	2.5	8.4	11.9
D-Score@SYBYL	33	2.1	8.4	14.4
PMF@SYBYL	34	2.1	8.1	12.6
PMF04@DS	35	1.8	8.1	12.6
		_		

Tabela 39: Experimento 19 - Comparação com outras funcões de escore do CASF-2016 no teste do *Reverse Screening Power*. Adaptado de: SU et al. (2018).

Avaliando o desempenho geral da função de escore proposta, pode-se concluir que teve um bom resultado na avaliação do CASF-2016, superando as escalas consideradas boas e alcançando uma perfomance semelhante ao Δ VinaRF20, a função de escore com melhores resultados do *benchmark*. Portanto, o modelo preditivo desenvolvido neste trabalho pode ser considerada como uma opção para prever afinidades de docagem molecular proteína-ligante.

A metodologia, os conjuntos de dados, os atributos, os métodos *machine learning* e as técnicas de otimização dos outros experimentos podem ser vistas no Anexo B.

5.1 Tempo de execução

Como uma avaliação adicional, foi analisado o tempo de execução da função de escore para prever a energía de interação de um complexo proteína-ligante. A medição do tiempo de cálculo inclui a preparação dos dados de entrada, geração de atributos, carregamento do modelo treinado e previsão do valor de afinidade.

A Figura 49 mostra uma comparativa entre a função de escore proposta e o modelo preditivo de WANG; ZHANG (2017) (DeltaVinaRF20). Ambos foram contrastados pelo tempo médio usado para prever a afinidade de um complexo. Como conjunto de teste, foi utilizado o PDBbind *core set*, que inclui 285 complexos proteína-ligante de tamanhos diferentes, onde foram calculados suas energías de ligação e registrados seus tempos de execução.

Figura 49: Comparativo entre a função de escore proposta e o DeltaVinaRF20 utilizando como conjunto de teste o PDBbind *core set*. As afinidades dos 285 complexos proteína-ligante foram previstos e calculados os tempos de execução médios das duas funções de escore.

De acordo com seus tempos médios de execução, a função de escore proposta é três vezes mais lenta que o DeltaVinaRF20 para prever a afinidade de ligação de um complexo proteína-ligante, principalmente devido à variedade de seus atributos. Os tempos médios de geração de cada grupo de características podem ser vistos na Figura 50 a seguir.

Figura 50: Tempos médios de execução dos conjuntos de atributos. Cada grupo de características é calculado sequencialmente, portanto o tempo total dessa parte do processo seria a soma de todos os valores.

De acordo com a estrutura do programa da função de escore proposta, cada conjunto de atributos é gerado sequencialmente, portanto o total corresponde à soma de todos os tempos. O cálculo das 350 características do NNscore 2.0 (DURRANT; MCCAMMON, 2011a) é o que ocupa a maior custo nesta parte do processo. No entanto, o tempo total pode ser aprimorado através da execução paralela de cada módulo responsável pela criação de cada grupo de atributos.

Como síntese final, pode ser considerado razoável o tempo médio de execução da função de escore para prever a afinidade de um complexo proteína-ligante, levando em consideração que essa avaliação foi realizada com um computador com configuração média.

6 CONCLUSÕES

O desenvolvimento de medicamentos incorporou métodos computacionais que otimizam todo o processo e, assim, economizam tempo e dinheiro. Uma dessas técnicas é a docagem molecular, que é utilizada para prever a melhor pose/conformação da molécula quando ela interage com seu receptor; também para estimar a energia de afinidade entre eles. A docagem molecular para calcular essas duas etapas, utiliza dois tipos de algoritmos: algoritmos de busca para posicionar o ligante em sítios ativos da proteína e funções de escore para avaliar a afinidade das numerosas conformações obtidas na primeira etapa.

Existem diferentes tipos de funções de escore para prever a afinidade do complexo proteína-ligantte: funções baseadas na física da interação (*physics-based*), funções que estimam a afinidade através da soma de termos de energia (*empirical*), funções que empregam potenciais de energia derivados de informações estruturais incorporadas em estruturas atômicas experimentalmente determinadas (*knowledge-based*), e funções que incorporam uma abordagem *machine learning*.

As funções de escore baseadas em *machine learning* podem utilizar como dados de entrada algumas características da interação dos complexos proteína-ligante que estão disponíveis na literatura (YAP, 2011; DURRANT; MCCAMMON, 2011b; LANDRUM, 2013), seu objetivo é criar um modelo capaz de prever a força de ligação das proteínas e ligantes através da relação dessas características com os dados de afinidade dos complexos proteína-ligante com os quais foram treinados. Os conjuntos de complexos proteínaligante a serem utilizados como treinamento podem ser encontrados em repositórios acessíveis ao público como PDBbind Database (WANG et al., 2005), Binding MOAD (BENSON et al., 2007), ou DUD-E (MYSINGER et al., 2012). Cabe ressaltar a abordagem de WANG; ZHANG (2017) que compila para treinar sua função de escore um conjunto que consiste em complexos de afinidade e qualidade alta do PDBbind refined set (WANG et al., 2004) e CSAR-NRC HiQ (DUNBAR JR et al., 2011), complexos de baixa afinidade do PDBbind general set (WANG et al., 2004), e decoys selecionados do Decoys CSAR-NRC HiQ (HUANG; ZOU, 2011). Como qualquer problema de machine *learning*, o desempenho dos modelos pode ser acrescentado através de técnicas de seleção de atributos ou otimização de hiperparâmetros.

Para avaliar as funções de escore, existem conjuntos de testes diferentes, como CASF (CHENG et al., 2009; LI et al., 2014; SU et al., 2018), CSAR (SMITH et al., 2011; DAMM-GANAMET et al., 2013), D3R (GATHIAKA et al., 2016; GAIEB et al., 2018), entre outros. O CASF, especificamente na sua versão do 2016 (SU et al., 2018), calcula os desempenhos de acordo com 5 métricas: à capacidade da função de escore para prever afinidades de ligação (*Scoring Power*), capacidade da função de escore de classificar corretamente os ligantes conhecidos para uma proteína específica (*Ranking Power*), à capacidade da função de escore para identificar a posição de ligação do ligante nativo entre *decoys* (*Docking Power*), à capacidade da função de escore proposta para identificar ligantes verdadeiros para uma proteína alvo entre moléculas aleatórias (*Forward Screening Power*), e à capacidade do modelo preditivo para identificar proteínas alvos potenciais para um ligante específico (*Reverse Screening Power*).

Neste trabalho, foi desenvolvida uma função de escore baseada em *machine learning* para prever a afinidade de ligação de complexos proteína-ligante. Para definir a metodologia, foram estudados muitos trabalhos relacionados ao desenvolvimento de funções de escore baseadas em *machine learning*, diferentes tipos de características e conjunto de dados utilizados, *benchmaks* utilzados para avaliação do desempenho, além de técnicas de seleção de atributos e otimização de parâmetros para melhorar modelos preditivos.

De acordo com o desempenho obtido nos testes CASF-2016 (SU et al., 2018), a função de escore proposta pode ser considerada uma opção para prever afinidades de ligação de complexos proteína-ligante. Portanto, coincidindo com WANG; ZHANG (2017), a abordagem *machine learning* pode ser vista como promissora para melhorar as técnicas de docagem molecular.

Comparando com o estado da arte, contrastando a função de escore proposta com o modelo preditivo DeltaVinaRF20 (WANG; ZHANG, 2017), a partir do qual vários elementos foram considerados para a metodologia deste trabalho, os resultados alcançados foram semelhantes aos seus utilizando os conjuntos de testes do CASF-2016, no entanto, foi atingido com um grupo de características diferente e superior, pois, de acordo com os resultados iniciais desta dissertação, considerando apenas os atributos e indicações para criar os modelos descritos por WANG; ZHANG (2017), não foi possível igualar o desempenho do DeltaVinaRF20. Fazendo uma analogia com as funções de escore com licença comercial avaliadas no CASF-2016; como Glide (FRIESNER et al., 2006), GOLD (JOY et al., 2006), Discovery Studio (STUDIO, 2008), SYBYL (MORRIS, 2002), MOE (VILAR; COZZA; MORO, 2008) e X-SCORE (WANG; LAI; WANG, 2002); o modelo proposto conseguiu um melhor desempenho nas métricas de Scoring Power e Ranking Power, além de um alta performance no Docking Power (abaixo de Glide e MOE), no entanto, sua capacidade de detectar ligantes potenciales para uma determinada proteína alvo (Virtual Screening) está abaixo de Gride e GOLD, portanto seria um ponto a ser melhorado.

7 TRABALHOS FUTUROS

Desenvolver uma função de escore robusta que generalize o cálculo de afinidade de interação entre ligante-receptor continua sendo um desafio. Os bancos de dados de complexos proteína-ligante estão aumentando constantemente, juntamente com o surgimento de novas funções de escore com diferentes tipos de abordagens, utilizando novos métodos e/ou novas características. Portanto, a metodologia apresentada nesta dissertação pode ser atualizada com esses novos trabalhos, incluindo novos conjuntos de treinamento, métodos *machine learning* ou técnicas que ajudam a aumentar a qualidade dos modelos preditivos.

A função de escore proposta nesta dissertação foi avaliada apenas utilzando o conjunto de testes CASF-2016 (SU et al., 2018), portanto, propõe-se considerar outros *benchmarks*, como CSAR (SMITH et al., 2011; DAMM-GANAMET et al., 2013) ou D3R (GATHIAKA et al., 2016; GAIEB et al., 2018), para qualificar o desempenho do modelo preditivo.

REFERÊNCIAS

AFIFI, K.; AL-SADEK, A. F. Improving classical scoring functions using random forest: The non-additivity of free energy terms' contributions in binding. **Chemical biology & drug design**, [S.1.], v.92, n.2, p.1429–1434, 2018.

AGARWAL, S.; MEHROTRA, R. An overview of molecular docking. **JSM Chemistry**, [S.1.], v.4, n.2, p.1024, 2016.

AHA, D. W. Lazy learning. [S.l.]: Springer Science & Business Media, 2013.

AIN, Q. U.; ALEKSANDROVA, A.; ROESSLER, F. D.; BALLESTER, P. J. Machinelearning scoring functions to improve structure-based binding affinity prediction and virtual screening. **Wiley Interdisciplinary Reviews: Computational Molecular Science**, [S.1.], v.5, n.6, p.405–424, 2015.

ANDERSEN, C. A.; PALMER, A. G.; BRUNAK, S.; ROST, B. Continuum secondary structure captures protein flexibility. **Structure**, [S.l.], v.10, n.2, p.175–184, 2002.

AYODELE, T. O. Types of machine learning algorithms. **New advances in machine learning**, [S.1.], p.19–48, 2010.

BALLESTER, P. J.; MITCHELL, J. B. A machine learning approach to predicting protein–ligand binding affinity with applications to molecular docking. **Bioinformatics**, [S.1.], v.26, n.9, p.1169–1175, 2010.

BAN, T.; OHUE, M.; AKIYAMA, Y. Efficient hyperparameter optimization by using Bayesian optimization for drug-target interaction prediction. In: IEEE 7TH INTERNATI-ONAL CONFERENCE ON COMPUTATIONAL ADVANCES IN BIO AND MEDICAL SCIENCES (ICCABS), 2017., 2017. **Anais...** [S.l.: s.n.], 2017. p.1–6.

BENSON, M. L.; SMITH, R. D.; KHAZANOV, N. A.; DIMCHEFF, B.; BEAVER, J.; DRESSLAR, P.; NEROTHIN, J.; CARLSON, H. A. Binding MOAD, a high-quality protein–ligand database. **Nucleic acids research**, [S.l.], v.36, n.suppl_1, p.D674–D678, 2007.

BERGSTRA, J.; BENGIO, Y. Random search for hyper-parameter optimization. Journal of machine learning research, [S.l.], v.13, n.Feb, p.281–305, 2012.

BERMAN, H. M.; BOURNE, P. E.; WESTBROOK, J.; ZARDECKI, C. The protein data bank. In: **Protein Structure**. [S.1.]: CRC Press, 2003. p.394–410.

BREIMAN, L. Random forests. Machine learning, [S.l.], v.45, n.1, p.5–32, 2001.

BRESSERT, E. **SciPy and NumPy**: an overview for developers. [S.l.]: "O'Reilly Media, Inc.", 2012.

BROOIJMANS, N.; KUNTZ, I. D. Molecular recognition and docking algorithms. Annual review of biophysics and biomolecular structure, [S.l.], v.32, n.1, p.335–373, 2003.

BÜRGI, R.; KOLLMAN, P. A.; GUNSTEREN, W. F. van. Simulating proteins at constant pH: an approach combining molecular dynamics and Monte Carlo simulation. **Proteins: Structure, Function, and Bioinformatics**, [S.1.], v.47, n.4, p.469–480, 2002.

BURSULAYA, B. D.; TOTROV, M.; ABAGYAN, R.; BROOKS, C. L. Comparative study of several algorithms for flexible ligand docking. **Journal of computer-aided molecular design**, [S.1.], v.17, n.11, p.755–763, 2003.

CADENAS, J. M.; GARRIDO, M. C.; MARTÍNEZ, R. Feature subset selection filter– wrapper based on low quality data. **Expert systems with applications**, [S.l.], v.40, n.16, p.6241–6252, 2013.

CAI, J.; LUO, J.; WANG, S.; YANG, S. Feature selection in machine learning: A new perspective. **Neurocomputing**, [S.1.], v.300, p.70–79, 2018.

CALIXTO, J. B.; SIQUEIRA JUNIOR, J. M. Desenvolvimento de medicamentos no Brasil: desafios. **Gazeta médica da Bahia**, [S.1.], v.78, n.1, 2008.

CARBONE, L. Pain in laboratory animals: the ethical and regulatory imperatives. **PLoS One**, [S.l.], v.6, n.9, p.e21578, 2011.

CHARIFSON, P. S.; CORKERY, J. J.; MURCKO, M. A.; WALTERS, W. P. Consensus scoring: A method for obtaining improved hit rates from docking databases of threedimensional structures into proteins. **Journal of medicinal chemistry**, [S.1.], v.42, n.25, p.5100–5109, 1999.

CHASKAR, P.; ZOETE, V.; ROHRIG, U. F. Toward on-the-fly quantum mechanical/molecular mechanical (QM/MM) docking: development and benchmark of a scoring function. **Journal of chemical information and modeling**, [S.l.], v.54, n.11, p.3137– 3152, 2014. CHEN, J.; HUANG, H.; TIAN, S.; QU, Y. Feature selection for text classification with Naïve Bayes. **Expert Systems with Applications**, [S.l.], v.36, n.3, p.5432–5435, 2009.

CHENG, T.; LI, X.; LI, Y.; LIU, Z.; WANG, R. Comparative assessment of scoring functions on a diverse test set. **Journal of chemical information and modeling**, [S.l.], v.49, n.4, p.1079–1093, 2009.

COCK, P. J.; ANTAO, T.; CHANG, J. T.; CHAPMAN, B. A.; COX, C. J.; DALKE, A.; FRIEDBERG, I.; HAMELRYCK, T.; KAUFF, F.; WILCZYNSKI, B. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. **Bioinformatics**, [S.I.], v.25, n.11, p.1422–1423, 2009.

CROUX, C.; DEHON, C. Influence functions of the Spearman and Kendall correlation measures. **Statistical methods & applications**, [S.l.], v.19, n.4, p.497–515, 2010.

DAMM-GANAMET, K. L.; SMITH, R. D.; DUNBAR JR, J. B.; STUCKEY, J. A.; CARLSON, H. A. CSAR benchmark exercise 2011–2012: evaluation of results from docking and relative ranking of blinded congeneric series. **Journal of chemical information and modeling**, [S.1.], v.53, n.8, p.1853–1870, 2013.

DASTMALCHI, S. Methods and Algorithms for Molecular Docking-based Drug Design and Discovery. [S.l.]: IGI Global, 2016.

DENG, W.; BRENEMAN, C.; EMBRECHTS, M. J. Predicting protein- ligand binding affinities using novel geometrical descriptors and machine-learning methods. **Journal of chemical information and computer sciences**, [S.1.], v.44, n.2, p.699–703, 2004.

DENG, Z.; CHUAQUI, C.; SINGH, J. Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein- ligand binding interactions. **Journal of medicinal chemistry**, [S.1.], v.47, n.2, p.337–344, 2004.

DICKSON, M.; GAGNON, J. P. Key factors in the rising cost of new drug discovery and development. **Nature reviews Drug discovery**, [S.l.], v.3, n.5, p.417, 2004.

DOKE, S. K.; DHAWALE, S. C. Alternatives to animal testing: A review. Saudi Pharmaceutical Journal, [S.1.], v.23, n.3, p.223–229, 2015.

DUNBAR JR, J. B.; SMITH, R. D.; DAMM-GANAMET, K. L.; AHMED, A.; ESPO-SITO, E. X.; DELPROPOSTO, J.; CHINNASWAMY, K.; KANG, Y.-N.; KUBISH, G.; GESTWICKI, J. E. et al. CSAR data set release 2012: ligands, affinities, complexes, and docking decoys. **Journal of chemical information and modeling**, [S.1.], v.53, n.8, p.1842–1852, 2013. DUNBAR JR, J. B.; SMITH, R. D.; YANG, C.-Y.; UNG, P. M.-U.; LEXA, K. W.; KHA-ZANOV, N. A.; STUCKEY, J. A.; WANG, S.; CARLSON, H. A. CSAR benchmark exercise of 2010: selection of the protein–ligand complexes. **Journal of chemical infor-mation and modeling**, [S.1.], v.51, n.9, p.2036–2046, 2011.

DURHAM, E.; DORR, B.; WOETZEL, N.; STARITZBICHLER, R.; MEILER, J. Solvent accessible surface area approximations for rapid and accurate protein structure prediction. **Journal of molecular modeling**, [S.1.], v.15, n.9, p.1093–1108, 2009.

DURRANT, J. D.; MCCAMMON, J. A. NNScore: a neural-network-based scoring function for the characterization of protein- ligand complexes. **Journal of chemical information and modeling**, [S.1.], v.50, n.10, p.1865–1871, 2010.

DURRANT, J. D.; MCCAMMON, J. A. NNScore 2.0: a neural-network receptor–ligand scoring function. Journal of chemical information and modeling, [S.l.], v.51, n.11, p.2897–2903, 2011.

DURRANT, J. D.; MCCAMMON, J. A. BINANA: a novel algorithm for ligand-binding characterization. Journal of Molecular Graphics and Modelling, [S.1.], v.29, n.6, p.888–893, 2011.

ELDRIDGE, M. D.; MURRAY, C. W.; AUTON, T. R.; PAOLINI, G. V.; MEE, R. P. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. **Journal of computer-aided molecular design**, [S.I.], v.11, n.5, p.425–445, 1997.

ENGLISH, B. P.; MIN, W.; VAN OIJEN, A. M.; LEE, K. T.; LUO, G.; SUN, H.; CHE-RAYIL, B. J.; KOU, S.; XIE, X. S. Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited. **Nature chemical biology**, [S.1.], v.2, n.2, p.87, 2006.

ERICKSON, C. B.; ANKENMAN, B. E.; SANCHEZ, S. M. Comparison of Gaussian process modeling software. **European Journal of Operational Research**, [S.l.], v.266, n.1, p.179–192, 2018.

EWING, T. J.; KUNTZ, I. D. Critical evaluation of search algorithms for automated molecular docking and database screening. **Journal of computational chemistry**, [S.l.], v.18, n.9, p.1175–1189, 1997.

FOITHONG, S.; PINNGERN, O.; ATTACHOO, B. Feature subset selection wrapper based on mutual information and rough sets. **Expert Systems with Applications**, [S.1.], v.39, n.1, p.574–584, 2012.

FONTI, V.; BELITSER, E. Feature selection using lasso. VU Amsterdam Research Paper in Business Analytics, [S.1.], p.1–25, 2017.

FRIESNER, R. A.; MURPHY, R. B.; REPASKY, M. P.; FRYE, L. L.; GREENWOOD, J. R.; HALGREN, T. A.; SANSCHAGRIN, P. C.; MAINZ, D. T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein- ligand complexes. **Journal of medicinal chemistry**, [S.1.], v.49, n.21, p.6177–6196, 2006.

GABEL, J.; DESAPHY, J.; ROGNAN, D. Beware of Machine Learning-Based Scoring Functions On the Danger of Developing Black Boxes. **Journal of chemical information and modeling**, [S.1.], v.54, n.10, p.2807–2815, 2014.

GAIEB, Z.; LIU, S.; GATHIAKA, S.; CHIU, M.; YANG, H.; SHAO, C.; FEHER, V. A.; WALTERS, W. P.; KUHN, B.; RUDOLPH, M. G. et al. D3R Grand Challenge 2: blind prediction of protein–ligand poses, affinity rankings, and relative binding free energies. **Journal of computer-aided molecular design**, [S.1.], v.32, n.1, p.1–20, 2018.

GARRETA, R.; MONCECCHI, G. Learning scikit-learn: machine learning in python. [S.l.]: Packt Publishing Ltd, 2013.

GATHIAKA, S.; LIU, S.; CHIU, M.; YANG, H.; STUCKEY, J. A.; KANG, Y. N.; DEL-PROPOSTO, J.; KUBISH, G.; DUNBAR, J. B.; CARLSON, H. A. et al. D3R grand challenge 2015: evaluation of protein–ligand pose and affinity predictions. **Journal of computer-aided molecular design**, [S.1.], v.30, n.9, p.651–668, 2016.

GHARAGHANI, S.; KHAYAMIAN, T.; KESHAVARZ, F. Docking, molecular dynamics simulation studies, and structure-based QSAR model on cytochrome P450 2A6 inhibitors. **Structural Chemistry**, [S.l.], v.23, n.2, p.341–350, 2012.

GOHLKE, H.; HENDLICH, M.; KLEBE, G. Predicting binding modes, binding affinities andhot spots' for protein-ligand complexes using a knowledge-based scoring function. **Perspectives in Drug Discovery and Design**, [S.1.], v.20, n.1, p.115–144, 2000.

GRAVES, A. P.; BRENK, R.; SHOICHET, B. K. Decoys for docking. Journal of medicinal chemistry, [S.1.], v.48, n.11, p.3714–3728, 2005.

GRINTER, S. Z.; ZOU, X. Challenges, applications, and recent advances of proteinligand docking in structure-based drug design. **Molecules**, [S.I.], v.19, n.7, p.10150– 10176, 2014.

GUEDES, I. A.; MAGALHÃES, C. S. de; DARDENNE, L. E. Receptor–ligand molecular docking. **Biophysical reviews**, [S.l.], v.6, n.1, p.75–87, 2014.

GUPTA, A.; GANDHIMATHI, A.; SHARMA, P.; JAYARAM, B. ParDOCK: an all atom energy based Monte Carlo docking protocol for protein-ligand complexes. **Protein and peptide letters**, [S.l.], v.14, n.7, p.632–646, 2007.

HALL, M.; FRANK, E.; HOLMES, G.; PFAHRINGER, B.; REUTEMANN, P.; WIT-TEN, I. H. The WEKA data mining software: an update. **ACM SIGKDD explorations newsletter**, [S.l.], v.11, n.1, p.10–18, 2009.

HALPERIN, I.; MA, B.; WOLFSON, H.; NUSSINOV, R. Principles of docking: An overview of search algorithms and a guide to scoring functions. **Proteins: Structure, Function, and Bioinformatics**, [S.1.], v.47, n.4, p.409–443, 2002.

HARRINGTON, P. Machine learning in action. [S.1.]: Manning Publications Co., 2012.

HATHOUT, R. M.; METWALLY, A. A. Towards better modelling of drug-loading in solid lipid nanoparticles: Molecular dynamics, docking experiments and Gaussian Processes machine learning. **European Journal of Pharmaceutics and Biopharmaceutics**, [S.I.], v.108, p.262–268, 2016.

HENDLICH, M.; BERGNER, A.; GÜNTHER, J.; KLEBE, G. Relibase: design and development of a database for comprehensive analysis of protein–ligand interactions. **Journal of Molecular Biology**, [S.I.], v.326, n.2, p.607–620, 2003.

HETÉNYI, C.; VAN DER SPOEL, D. Blind docking of drug-sized compounds to proteins with up to a thousand residues. **FEBS letters**, [S.1.], v.580, n.5, p.1447–1450, 2006.

HILDEBRANDT, A.; DEHOF, A. K.; RURAINSKI, A.; BERTSCH, A.; SCHUMANN, M.; TOUSSAINT, N. C.; MOLL, A.; STÖCKEL, D.; NICKELS, S.; MUELLER, S. C. et al. BALL-biochemical algorithms library 1.3. **BMC bioinformatics**, [S.l.], v.11, n.1, p.531, 2010.

HOLT, P. A.; CHAIRES, J. B.; TRENT, J. O. Molecular docking of intercalators and groove-binders to nucleic acids using Autodock and Surflex. **Journal of chemical infor-mation and modeling**, [S.1.], v.48, n.8, p.1602–1615, 2008.

HUANG, S.-Y.; GRINTER, S. Z.; ZOU, X. Scoring functions and their evaluation methods for protein–ligand docking: recent advances and future directions. **Physical Chemistry Chemical Physics**, [S.1.], v.12, n.40, p.12899–12908, 2010.

HUANG, S.-Y.; ZOU, X. An iterative knowledge-based scoring function to predict protein–ligand interactions: I. Derivation of interaction potentials. Journal of computational chemistry, [S.l.], v.27, n.15, p.1866–1875, 2006.

HUANG, S.-Y.; ZOU, X. Advances and challenges in protein-ligand docking. **Internati-onal journal of molecular sciences**, [S.l.], v.11, n.8, p.3016–3034, 2010.

HUANG, S.-Y.; ZOU, X. Inclusion of solvation and entropy in the knowledge-based scoring function for protein- ligand interactions. **Journal of chemical information and modeling**, [S.1.], v.50, n.2, p.262–273, 2010. HUANG, S.-Y.; ZOU, X. Construction and test of ligand decoy sets using MDock: community structure–activity resource benchmarks for binding mode prediction. **Journal of chemical information and modeling**, [S.1.], v.51, n.9, p.2107–2114, 2011.

HUEY, R.; MORRIS, G. M.; FORLI, S. Using AutoDock 4 and AutoDock Vina with AutoDockTools: A Tutorial. **The Scripps Research Institute Molecular Graphics Laboratory**, [S.1.], 2012.

HULLEY, S. B. **Designing clinical research**. [S.1.]: Lippincott Williams & Wilkins, 2007.

HUTTER, F.; LÜCKE, J.; SCHMIDT-THIEME, L. Beyond manual tuning of hyperparameters. **KI-Künstliche Intelligenz**, [S.l.], v.29, n.4, p.329–337, 2015.

JI, S.; XU, W.; YANG, M.; YU, K. 3D convolutional neural networks for human action recognition. **IEEE transactions on pattern analysis and machine intelligence**, [S.l.], v.35, n.1, p.221–231, 2012.

JIMÉNEZ, J.; DOERR, S.; MARTÍNEZ-ROSELL, G.; ROSE, A.; DE FABRITIIS, G. DeepSite: protein-binding site predictor using 3D-convolutional neural networks. **Bioinformatics**, [S.1.], v.33, n.19, p.3036–3042, 2017.

JIMÉNEZ, J.; SKALIC, M.; MARTINEZ-ROSELL, G.; DE FABRITIIS, G. K DEEP: Protein–Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks. **Journal of chemical information and modeling**, [S.1.], v.58, n.2, p.287–296, 2018.

JONES, S.; THORNTON, J. M. Principles of protein-protein interactions. **Proceedings** of the National Academy of Sciences, [S.1.], v.93, n.1, p.13–20, 1996.

JOVIĆ, A.; BRKIĆ, K.; BOGUNOVIĆ, N. A review of feature selection methods with applications. In: MIPRO), 2015., 2015. **Anais...** [S.l.: s.n.], 2015. p.1200–1205.

JOY, S.; NAIR, P. S.; HARIHARAN, R.; PILLAI, M. R. Detailed comparison of the protein-ligand docking efficiencies of GOLD, a commercial package and ArgusLab, a licensable freeware. **In silico biology**, [S.l.], v.6, n.6, p.601–605, 2006.

KADUKOVA, M.; GRUDININ, S. Convex-PL: a novel knowledge-based potential for protein-ligand interactions deduced from structural databases using convex optimization. **Journal of computer-aided molecular design**, [S.l.], v.31, n.10, p.943–958, 2017.

KHAMIS, M. A.; GOMAA, W. Comparative assessment of machine-learning scoring functions on PDBbind 2013. **Engineering Applications of Artificial Intelligence**, [S.I.], v.45, p.136–151, 2015.

KIM, S.; THIESSEN, P. A.; BOLTON, E. E.; CHEN, J.; FU, G.; GINDULYTE, A.; HAN, L.; HE, J.; HE, S.; SHOEMAKER, B. A. et al. PubChem substance and compound databases. **Nucleic acids research**, [S.1.], v.44, n.D1, p.D1202–D1213, 2015.

KINNINGS, S. L.; LIU, N.; TONGE, P. J.; JACKSON, R. M.; XIE, L.; BOURNE, P. E. A machine learning-based method to improve docking scoring functions and its application to drug repurposing. **Journal of chemical information and modeling**, [S.l.], v.51, n.2, p.408–419, 2011.

KITCHEN, D. B.; DECORNEZ, H.; FURR, J. R.; BAJORATH, J. Docking and scoring in virtual screening for drug discovery: methods and applications. **Nature reviews Drug discovery**, [S.1.], v.3, n.11, p.935, 2004.

KLON, A. E.; GLICK, M.; DAVIES, J. W. Combination of a naive Bayes classifier with consensus scoring improves enrichment of high-throughput docking results. **Journal of medicinal chemistry**, [S.1.], v.47, n.18, p.4356–4359, 2004.

KOES, D. R.; BAUMGARTNER, M. P.; CAMACHO, C. J. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. **Journal of chemical information and modeling**, [S.I.], v.53, n.8, p.1893–1904, 2013.

KOHAVI, R. et al. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: IJCAI, 1995. **Anais...** [S.l.: s.n.], 1995. v.14, n.2, p.1137–1145.

KOLODZIK, A.; SCHNEIDER, N.; RAREY, M. Structure-Based Virtual Screening. Applied Chemoinformatics: Achievements and Future Opportunities, [S.I.], p.313–331, 2018.

KOZAKOV, D.; HALL, D. R.; XIA, B.; PORTER, K. A.; PADHORNY, D.; YUEH, C.; BEGLOV, D.; VAJDA, S. The ClusPro web server for protein–protein docking. **Nature protocols**, [S.1.], v.12, n.2, p.255, 2017.

KRAMER, O. Scikit-learn. In: Machine learning for evolution strategies. [S.l.]: Springer, 2016. p.45–53.

KULIK, H. J. Large-scale QM/MM free energy simulations of enzyme catalysis reveal the influence of charge transfer. **Physical Chemistry Chemical Physics**, [S.1.], v.20, n.31, p.20650–20660, 2018.

KUNDU, I.; PAUL, G.; BANERJEE, R. A machine learning approach towards the prediction of protein–ligand binding affinity based on fundamental molecular properties. **RSC Advances**, [S.1.], v.8, n.22, p.12127–12137, 2018.

KUNTZ, I. D. Structure-based strategies for drug design and discovery. **Science**, [S.l.], v.257, n.5073, p.1078–1082, 1992.

KURSA, M. B.; RUDNICKI, W. R. et al. Feature selection with the Boruta package. J Stat Softw, [S.l.], v.36, n.11, p.1–13, 2010.

LANDRUM, G. Rdkit documentation. Release, [S.l.], v.1, p.1-79, 2013.

LAVECCHIA, A. Machine-learning approaches in drug discovery: methods and applications. **Drug discovery today**, [S.l.], v.20, n.3, p.318–331, 2015.

LEACH, A. R.; SHOICHET, B. K.; PEISHOFF, C. E. Prediction of protein- ligand interactions. Docking and scoring: Successes and gaps. **Journal of medicinal chemistry**, [S.1.], v.49, n.20, p.5851–5855, 2006.

LI, H.; LEUNG, K.-S.; WONG, M.-H.; BALLESTER, P. J. Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study. **BMC bioinformatics**, [S.l.], v.15, n.1, p.291, 2014.

LI, J.; FU, A.; ZHANG, L. An Overview of Scoring Functions Used for Protein–Ligand Interactions in Molecular Docking. **Interdisciplinary Sciences: Computational Life Sciences**, [S.1.], p.1–9, 2019.

LI, Y.; HAN, L.; LIU, Z.; WANG, R. Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results. **Journal of chemical information and modeling**, [S.1.], v.54, n.6, p.1717–1736, 2014.

LI, Y.; LIU, Z.; LI, J.; HAN, L.; LIU, J.; ZHAO, Z.; WANG, R. Comparative assessment of scoring functions on an updated benchmark: 1. Compilation of the test set. **Journal of chemical information and modeling**, [S.l.], v.54, n.6, p.1700–1716, 2014.

LI, Y.; REZAEI, M. A.; LI, C.; LI, X.; WU, D. DeepAtom: A Framework for Protein-Ligand Binding Affinity Prediction. **arXiv preprint arXiv:1912.00318**, [S.I.], 2019.

LI, Y.; SU, M.; LIU, Z.; LI, J.; LIU, J.; HAN, L.; WANG, R. Assessing protein–ligand interaction scoring functions with the CASF-2013 benchmark. **Nature protocols**, [S.l.], v.13, n.4, p.666–680, 2018.

LIAW, A.; WIENER, M. et al. Classification and regression by randomForest. **R news**, [S.1.], v.2, n.3, p.18–22, 2002.

LIPINSKI, C. A. Lead-and drug-like compounds: the rule-of-five revolution. **Drug Dis-covery Today: Technologies**, [S.l.], v.1, n.4, p.337–341, 2004.

LIPINSKI, C. A.; LOMBARDO, F.; DOMINY, B. W.; FEENEY, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews, [S.1.], v.23, n.1-3, p.3–25, 1997.

LISE, S.; ARCHAMBEAU, C.; PONTIL, M.; JONES, D. T. Prediction of hot spot residues at protein-protein interfaces by combining machine learning and energy-based methods. **BMC bioinformatics**, [S.l.], v.10, n.1, p.365, 2009.

LIU, J.; WANG, R. Classification of current scoring functions. Journal of chemical information and modeling, [S.l.], v.55, n.3, p.475–482, 2015.

LIU, Z.; LI, Y.; HAN, L.; LI, J.; LIU, J.; ZHAO, Z.; NIE, W.; LIU, Y.; WANG, R. PDB-wide collection of binding data: current status of the PDBbind database. **Bioinformatics**, [S.l.], v.31, n.3, p.405–412, 2014.

LIU, Z.; SU, M.; HAN, L.; LIU, J.; YANG, Q.; LI, Y.; WANG, R. Forging the basis for developing protein–ligand interaction scoring functions. **Accounts of chemical research**, [S.1.], v.50, n.2, p.302–309, 2017.

LOMBARDINO, J. G.; LOWE III, J. A. A guide to drug discovery: the role of the medicinal chemist in drug discovery—then and now. **Nature Reviews Drug Discovery**, [S.l.], v.3, n.10, p.853, 2004.

LYBRAND, T. P. Ligand—protein docking and rational drug design. **Current opinion** in structural biology, [S.l.], v.5, n.2, p.224–228, 1995.

LYONS, J. Enhanced Feature Extraction from Evolutionary Profiles for Protein Fold Recognition. 2015. Tese (Doutorado em Ciência da Computação) — Griffith University, Brisbane, Australia.

MACKERELL JR, A. D.; NILSSON, L. Molecular dynamics simulations of nucleic acidprotein complexes. **Current opinion in structural biology**, [S.l.], v.18, n.2, p.194–199, 2008.

MARSH, J. A.; TEICHMANN, S. A. Relative solvent accessible surface area predicts protein conformational changes upon binding. **Structure**, [S.l.], v.19, n.6, p.859–867, 2011.

MARSLAND, S. Machine learning: an algorithmic perspective. [S.l.]: CRC press, 2015.

MCCONKEY, B. J.; SOBOLEV, V.; EDELMAN, M. The performance of current methods in ligand–protein docking. **Current Science**, [S.1.], p.845–856, 2002.

MCGANN, M. R.; ALMOND, H. R.; NICHOLLS, A.; GRANT, J. A.; BROWN, F. K. Gaussian docking functions. **Biopolymers: Original Research on Biomolecules**, [S.1.], v.68, n.1, p.76–90, 2003.

MEHROTRA, R.; JANGIR, D. K.; AGARWAL, S.; RAY, B.; SINGH, P.; SRIVASTAVA, A. Interaction studies of anticancer drug lomustine with calf thymus DNA using surface enhanced Raman spectroscopy. **Mapan**, [S.1.], v.28, n.4, p.273–277, 2013.

MELLOR, J.; GRIGORAS, I.; CARBONELL, P.; FAULON, J.-L. Semisupervised Gaussian process for automated enzyme search. **ACS synthetic biology**, [S.1.], v.5, n.6, p.518–528, 2016.

MENG, E. C.; SHOICHET, B. K.; KUNTZ, I. D. Automated docking with grid-based energy evaluation. Journal of computational chemistry, [S.l.], v.13, n.4, p.505–524, 1992.

MENG, X.-Y.; ZHANG, H.-X.; MEZEI, M.; CUI, M. Molecular docking: a powerful approach for structure-based drug discovery. **Current computer-aided drug design**, [S.l.], v.7, n.2, p.146–157, 2011.

MICHEL, J.; TIRADO-RIVES, J.; JORGENSEN, W. L. Prediction of the water content in protein binding sites. **The Journal of Physical Chemistry B**, [S.l.], v.113, n.40, p.13337–13346, 2009.

MOHS, R. C.; GREIG, N. H. Drug discovery and development: Role of basic biological research. Alzheimer's & Dementia: Translational Research & Clinical Interventions, [S.1.], v.3, n.4, p.651–657, 2017.

MOL, N. J. de; CATALINA, M. I.; DEKKER, F. J.; FISCHER, M. J.; HECK, A. J.; LISKAMP, R. M. Protein flexibility and ligand rigidity: a thermodynamic and kinetic study of ITAM-based ligand binding to Syk tandem SH2. **ChemBioChem**, [S.l.], v.6, n.12, p.2261–2270, 2005.

MORRIS, G. SYBYL software, version 6.9. Louis, St., Tripos Associates, [S.1.], 2002.

MORRIS, G. M.; GOODSELL, D. S.; HALLIDAY, R. S.; HUEY, R.; HART, W. E.; BELEW, R. K.; OLSON, A. J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. **Journal of computational chemistry**, [S.1.], v.19, n.14, p.1639–1662, 1998.

MORRIS, G. M.; HUEY, R.; LINDSTROM, W.; SANNER, M. F.; BELEW, R. K.; GO-ODSELL, D. S.; OLSON, A. J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. **Journal of computational chemistry**, [S.1.], v.30, n.16, p.2785–2791, 2009.

MORRIS, G. M.; LIM-WILBY, M. Molecular docking. In: Molecular modeling of proteins. [S.1.]: Springer, 2008. p.365–382. MUEGGE, I. PMF scoring revisited. **Journal of medicinal chemistry**, [S.l.], v.49, n.20, p.5895–5902, 2006.

MUKESH, B.; RAKESH, K. Molecular docking: a review. International Journal of Research in Ayurveda & Pharmacy, [S.l.], v.2, n.6, p.1746–1751, 2011.

MYSINGER, M. M.; CARCHIA, M.; IRWIN, J. J.; SHOICHET, B. K. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. **Journal of medicinal chemistry**, [S.1.], v.55, n.14, p.6582–6594, 2012.

NAIR, V.; HINTON, G. E. Rectified linear units improve restricted boltzmann machines. In: ICML-10), 27., 2010. **Proceedings...** [S.l.: s.n.], 2010. p.807–814.

NELSON, D. L.; COX, M. M. **Princípios de Bioquímica de Lehninger-7**. [S.l.]: Artmed Editora, 2018.

OLIPHANT, T. E. Python for scientific computing. **Computing in Science & Engineering**, [S.1.], v.9, n.3, p.10–20, 2007.

ONODERA, K.; SATOU, K.; HIROTA, H. Evaluations of molecular docking programs for virtual screening. **Journal of chemical information and modeling**, [S.l.], v.47, n.4, p.1609–1618, 2007.

PAGADALA, N. S.; SYED, K.; TUSZYNSKI, J. Software for molecular docking: a review. **Biophysical reviews**, [S.1.], v.9, n.2, p.91–102, 2017.

PEARSON, W. R. Finding protein and nucleotide similarities with FASTA. Current protocols in bioinformatics, [S.l.], v.53, n.1, p.3–9, 2016.

PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; MICHEL, V.; THIRION, B.; GRISEL, O.; BLONDEL, M.; PRETTENHOFER, P.; WEISS, R.; DUBOURG, V. et al. Scikit-learn: Machine learning in Python. **Journal of machine learning research**, [S.I.], v.12, n.Oct, p.2825–2830, 2011.

PETTERSEN, E. F.; GODDARD, T. D.; HUANG, C. C.; COUCH, G. S.; GREEN-BLATT, D. M.; MENG, E. C.; FERRIN, T. E. UCSF Chimera—a visualization system for exploratory research and analysis. **Journal of computational chemistry**, [S.l.], v.25, n.13, p.1605–1612, 2004.

PIÑERO, J.; FURLONG, L. I.; SANZ, F. In silico models in drug development: where we are. **Current opinion in pharmacology**, [S.l.], v.42, p.111–121, 2018.

PRETTENHOFER, P.; LOUPPE, G. Gradient boosted regression trees in scikit-learn., [S.1.], 2014.

QI, Y. Random forest for bioinformatics. In: **Ensemble machine learning**. [S.l.]: Springer, 2012. p.307–323.

RAHA, K.; PETERS, M. B.; WANG, B.; YU, N.; WOLLACOTT, A. M.; WES-TERHOFF, L. M.; MERZ JR, K. M. The role of quantum mechanics in structure-based drug design. **Drug discovery today**, [S.l.], v.12, n.17-18, p.725–731, 2007.

RAJAMANI, R.; GOOD, A. C. Ranking poses in structure-based lead discovery and optimization: current trends in scoring function development. **Current opinion in drug discovery & development**, [S.1.], v.10, n.3, p.308–315, 2007.

RANGANATHAN, S.; NAKAI, K.; SCHONBACH, C. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics. [S.l.]: Elsevier, 2018.

RAREY, M.; KRAMER, B.; LENGAUER, T.; KLEBE, G. A fast flexible docking method using an incremental construction algorithm. **Journal of molecular biology**, [S.l.], v.261, n.3, p.470–489, 1996.

RASMUSSEN, C. E. Gaussian processes in machine learning. In: SUMMER SCHOOL ON MACHINE LEARNING, 2003. **Anais...** [S.l.: s.n.], 2003. p.63–71.

RENCHER, A. C.; SCHAALJE, G. B. Linear models in statistics. [S.1.]: John Wiley & Sons, 2008.

ROCHA, K. B.; AZEVEDO JÚNIOR, W. F. de. Virtual screening para identificação de inibidores da corismato sintase de Mycobacterium tuberculosis. , [S.1.], 2009.

ROST, B. Protein secondary structure prediction continues to rise. **Journal of structural biology**, [S.l.], v.134, n.2-3, p.204–218, 2001.

SANNER, M. F.; OLSON, A. J.; SPEHNER, J.-C. Reduced surface: an efficient way to compute molecular surfaces. **Biopolymers**, [S.l.], v.38, n.3, p.305–320, 1996.

SEDGWICK, P. Spearman's rank correlation coefficient. **Bmj**, [S.1.], v.349, p.g7327, 2014.

SEEGER, M. Gaussian processes for machine learning. **International journal of neural systems**, [S.1.], v.14, n.02, p.69–106, 2004.

SHAMSARA, J. CrossDocker: a tool for performing cross-docking using Autodock Vina. **SpringerPlus**, [S.l.], v.5, n.1, p.344, 2016.

SHOICHET, B. K.; KUNTZ, I. D.; BODIAN, D. L. Molecular docking using shape descriptors. Journal of Computational Chemistry, [S.l.], v.13, n.3, p.380–397, 1992. SINGH, N.; SHAH, P.; DWIVEDI, H.; MISHRA, S.; TRIPATHI, R.; SAHASRA-BUDDHE, A. A.; SIDDIQI, M. I. Integrated machine learning, molecular docking and 3D-QSAR based approach for identification of potential inhibitors of trypanosomal Nmyristoyltransferase. **Molecular BioSystems**, [S.I.], v.12, n.12, p.3711–3723, 2016.

SINGH, S.; SRIVASTAVA, H. K.; KISHOR, G.; SINGH, H.; AGRAWAL, P.; RAGHAVA, G. P. Evaluation of protein-ligand docking methods on peptide-ligand complexes for docking small ligands to peptides. **BioRxiv**, [S.1.], p.212514, 2017.

SIPPL, M. J. Calculation of conformational ensembles from potentials of mena force: an approach to the knowledge-based prediction of local structures in globular proteins. **Journal of molecular biology**, [S.I.], v.213, n.4, p.859–883, 1990.

SMITH, R. D.; DUNBAR JR, J. B.; UNG, P. M.-U.; ESPOSITO, E. X.; YANG, C.-Y.; WANG, S.; CARLSON, H. A. CSAR benchmark exercise of 2010: combined evaluation across all submitted scoring functions. **Journal of chemical information and modeling**, [S.1.], v.51, n.9, p.2115–2131, 2011.

SNELSON, E.; GHAHRAMANI, Z. Sparse Gaussian processes using pseudo-inputs. In: ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS, 2006. Anais... [S.l.: s.n.], 2006. p.1257–1264.

SOTRIFFER, C. A.; SANSCHAGRIN, P.; MATTER, H.; KLEBE, G. SFCscore: scoring functions for affinity prediction of protein–ligand complexes. **Proteins: Structure, Function, and Bioinformatics**, [S.1.], v.73, n.2, p.395–419, 2008.

SOTRIFFER, C.; KLEBE, G.; STAHL, M.; BÖHM, H.-J. Docking and scoring functions/virtual screening. **Burger's Medicinal Chemistry and Drug Discovery**, [S.1.], p.281–331, 2003.

STUDIO, D. Discovery Studio. Accelrys [2.1], [S.1.], 2008.

SU, M.; YANG, Q.; DU, Y.; FENG, G.; LIU, Z.; LI, Y.; WANG, R. Comparative Assessment of Scoring Functions: The CASF-2016 Update. Journal of chemical information and modeling, [S.1.], v.59, n.2, p.895–913, 2018.

SUTTER, J. M.; KALIVAS, J. H. Comparison of forward selection, backward elimination, and generalized simulated annealing for variable selection. **Microchemical journal**, [S.1.], v.47, n.1-2, p.60–66, 1993.

TEAM, R. C. et al. R: A language and environment for statistical computing. , [S.l.], 2013.

THOMAS, P. D.; DILL, K. A. An iterative method for extracting energy-like quantities from protein structures. **Proceedings of the National Academy of Sciences**, [S.1.], v.93, n.21, p.11628–11633, 1996.

TIBSHIRANI, R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), [S.1.], v.58, n.1, p.267–288, 1996.

TIBSHIRANI, R.; SAUNDERS, M.; ROSSET, S.; ZHU, J.; KNIGHT, K. Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology), [S.1.], v.67, n.1, p.91–108, 2005.

TROTT, O.; OLSON, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. **Journal of computational chemistry**, [S.I.], v.31, n.2, p.455–461, 2010.

TU, M.; CHENG, S.; LU, W.; DU, M. Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions. **TrAC Trends in Analytical Chemistry**, [S.I.], v.105, p.7–17, 2018.

TUFFERY, P.; DERREUMAUX, P. Flexibility and binding affinity in protein–ligand, protein–protein and multi-component protein interactions: limitations of current computational approaches. **Journal of The Royal Society Interface**, [S.1.], v.9, n.66, p.20–33, 2011.

TUSZYNSKA, I.; MAGNUS, M.; JONAK, K.; DAWSON, W.; BUJNICKI, J. M. NP-Dock: a web server for protein-nucleic acid docking. **Nucleic acids research**, [S.l.], v.43, n.W1, p.W425–W430, 2015.

VAKSER, I. A. Protein-protein docking: From interaction to interactome. **Biophysical journal**, [S.l.], v.107, n.8, p.1785–1793, 2014.

VAN DER WALT, S.; COLBERT, S. C.; VAROQUAUX, G. The NumPy array: a structure for efficient numerical computation. **Computing in Science & Engineering**, [S.l.], v.13, n.2, p.22, 2011.

VERIKAS, A.; BACAUSKIENE, M. Feature selection with neural networks. **Pattern** recognition letters, [S.1.], v.23, n.11, p.1323–1335, 2002.

VERLI, H. Bioinformática: da biologia à flexibilidade molecular. , [S.l.], 2014.

VIANNA, C. P.; AZEVEDO, W. F. de. Identification of new potential Mycobacterium tuberculosis shikimate kinase inhibitors through molecular docking simulations. **Journal of molecular modeling**, [S.1.], v.18, n.2, p.755–764, 2012.

VILAR, S.; COZZA, G.; MORO, S. Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. **Current topics in medicinal chemistry**, [S.l.], v.8, n.18, p.1555–1572, 2008.

WANG, C.; ZHANG, Y. Improving scoring-docking-screening powers of protein–ligand scoring functions using random forest. **Journal of computational chemistry**, [S.l.], v.38, n.3, p.169–177, 2017.

WANG, R.; FANG, X.; LU, Y.; WANG, S. The PDBbind database: Collection of binding affinities for protein- ligand complexes with known three-dimensional structures. **Journal of medicinal chemistry**, [S.1.], v.47, n.12, p.2977–2980, 2004.

WANG, R.; FANG, X.; LU, Y.; YANG, C.-Y.; WANG, S. The PDBbind database: methodologies and updates. **Journal of medicinal chemistry**, [S.l.], v.48, n.12, p.4111–4119, 2005.

WANG, R.; LAI, L.; WANG, S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. **Journal of computer-aided mo-lecular design**, [S.l.], v.16, n.1, p.11–26, 2002.

WANG, R.; WANG, S. How does consensus scoring work for virtual library screening? An idealized computer experiment. Journal of chemical information and computer sciences, [S.1.], v.41, n.5, p.1422–1426, 2001.

WANG, S.-Y.; LIU, J.-Y.; WANG, L.; DUAN, L.-W.; CHEN, Q.-T.; ZHENG, J.-H.; LIN, Z.-F.; LI, W.-F. Targeting programmed cell death 4 (PDCD4) with biogenic compounds in ARDS by Gaussian process-based QSAR virtual screening. **Journal of Chemometrics**, [S.1.], v.30, n.10, p.621–627, 2016.

WANG, Y.-H.; LI, Y.; YANG, S.-L.; YANG, L. Classification of substrates and inhibitors of P-glycoprotein using unsupervised machine learning approach. **Journal of chemical information and modeling**, [S.1.], v.45, n.3, p.750–757, 2005.

WITTEN, I. H.; FRANK, E.; HALL, M. A.; PAL, C. J. **Data Mining**: Practical machine learning tools and techniques. [S.l.]: Morgan Kaufmann, 2016.

WÓJCIKOWSKI, M.; ZIELENKIEWICZ, P.; SIEDLECKI, P. Open Drug Discovery Toolkit (ODDT): a new open-source player in the drug discovery field. **Journal of cheminformatics**, [S.l.], v.7, n.1, p.1–6, 2015.

YANG, Y.; LIGHTSTONE, F. C.; WONG, S. E. Approaches to efficiently estimate solvation and explicit water energetics in ligand binding: the use of WaterMap. **Expert opinion on drug discovery**, [S.l.], v.8, n.3, p.277–287, 2013. YAP, C. W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. **Journal of computational chemistry**, [S.1.], v.32, n.7, p.1466–1474, 2011.

YUNG-CHI, C.; PRUSOFF, W. H. Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. **Biochemical pharmacology**, [S.1.], v.22, n.23, p.3099–3108, 1973.

ZAVODSZKY, M. I.; SANSCHAGRIN, P. C.; KUHN, L. A.; KORDE, R. S. Distilling the essential features of a protein surface for improving protein-ligand docking, scoring, and virtual screening. **Journal of computer-aided molecular design**, [S.l.], v.16, n.12, p.883–902, 2002.

ZHANG, L.; AI, H.-X.; LI, S.-M.; QI, M.-Y.; ZHAO, J.; ZHAO, Q.; LIU, H.-S. Virtual screening approach to identifying influenza virus neuraminidase inhibitors using molecular docking combined with machine-learning-based scoring function. **Oncotarget**, [S.1.], v.8, n.47, p.83142, 2017.

ZILIAN, D.; SOTRIFFER, C. A. SFCscore RF: a random forest-based scoring function for improved affinity prediction of protein–ligand complexes. **Journal of chemical infor-mation and modeling**, [S.1.], v.53, n.8, p.1923–1933, 2013.

ZOLLNER, H.; ZOLLNER, H. Handbook of enzyme inhibitors. [S.1.]: VCH Weinheim, 1993. n.QD601. 5 Z64.

ANEXO A LISTADO DE CARACTERÍSTICAS

A Descritores SFCscore

No.	Abreviatura	Descrição
1	MW	Molecular weight
2	NAtoms	Number of atoms
3	NRotBonds	Number of rotatable bonds
4	n_ot	Number of rotatable bonds (only sp3-sp3 and sp3-sp2)
5	RBScore	Rotatable bond score
6	NHBonds	Number of H-bonds
7	c_b	Charged H-bond score
8	n_b	Neutral H-bond score
9	HBScore	Total H-bond score
10	met	Boehm-type
11	AHPDI	Atom hydrophobicity difference
12	BURCP	Buried carbon percentage
13	RRScore	Ring-ring interaction score
14	RMScore	Ring-metal interaction score
15	RKScore	Ring-Lys (NZ) interaction score
16	TotLigSurf	Total ligand surface area
17	HydLigSurf	Hydrophobic ligand surface area
18	PolLigSurf	Polar ligand surface area
19	AroLigSurf	Aromatic ligand surface area
20-23	[Tot,Hyd,Pol,Aro]BurSurf	[Total, hydrophobic, polar, aromatic] buried LSA
24-27	[Tot,Hyd,Pol,Aro]ExpSurf	[Total, hydrophobic, polar, aromatic] exposed LSA
28	Bur2TotLigSurf	Ratio of buried to total LSA
29-31	Bur2Tot[Hyd,Pol,Aro]Surf	Ratio of buried [hyd, pol, aro] to total [hyd, pol, aro] LSA
32	Exp2BurLigSurf	Ratio of exposed to buried LSA
33-35	Exp2Bur[Hyd,Pol,Aro]Surf	Ratio of exposed [hyd, pol, aro] to buried [hyd, pol, aro] LSA
36–38	Bur[Hyd,Pol,Aro]2TotLigSurf	Ratio of buried [hyd, pol, aro] to total LSA
39	BurHydAro2TotLigSurf	Ratio of buried hyd and aro surface to total LSA
40-42	Exp[Hyd,Pol,Aro]2TotLigSurf	Ratio of exposed [hyd, pol, aro] to total LSA
43	ExpHydAro2TotLigSurf	Ratio of exposed hyd and aro surface to total LSA
44–52	SURFC-[H,P,A]-[H,P,A]	Contact surfaces for all 9 combinations of LSA and PSA types,
53	HH_A_H_urfc	Sum of HH, HA, and AH contact surfaces
54	HH_A_H_A_urfc	Sum of HH, HA, AH, and AA contact surfaces
55	PH_P_urfc	Sum of PH and HP contact surfaces
56	PH_P_A_P_urfc	Sum of PH, HP, PA, and AP contact surfaces
57	HH_urfc2HydBurSurf	Ratio of HH contact surface to buried hydrophobic surface
58	PP_urfc2PolBurSurf	Ratio of PP contact surface to buried polar surface
59	AA_urfc2AroBurSurf	Ratio of AA contact surface to buried aromatic surface
60	HH_urfc2HydLigSurf	Ratio of HH contact surface to hydrophobic ligand surface
61	PP_urfc2PolLigSurf	Ratio of PP contact surface to polar ligand surface
62	AA_urfc2AroLigSurf	Ratio of AA contact surface to aromatic ligand surface
63	HHAAPP_urfc2TotLigSurf	Fraction of the ligand surface which is ideally buried
64	HHHAAHAA_urfc2HydAroLigSurf	Ratio of HH 1 HA 1 AH 1 AA contact surface to aro and hyd LSA
65	PH_P_urfc2TotLigSurf	Fraction of the ligand surface which is unfavourably buried
66	Buried-PH_P_urfc2TotLigSurf	Fraction of the ligand surface which is favourably buried

Tabela 40: Lista de descritores gerados pelo SFCscore. Fonte: (SOTRIFFER et al., 2008).

B Descritores relacionados à área de superfície acessível pelo solvente

Nro.	Atributo
1	positive
2	negative
3	donor-acceptor
4	donor
5	acceptor
6	aromatic
7	hydrophobic
8	polar
9	halogen
10	total bSASA

C Descritores do DeltaVinaRF20

Tabela 42: Descritores g	gerad	los pelo DeltaVinaRF20. Fonte: (WANG; ZHANG, 2017).
Ī	No.	Feature Description
Ā	Autoc	lock Vina Interaction
1	L	non hydrohobic
2	2	hydrogen bond
3	3	solvation
4	1-5	electrostatic
A	Autoc	lock Vina Ligand Dependent Terms
6	5	number of heavy atoms
7	7	number of hydrophobic atoms
8	3	number of torsion
9)	number of rotors
1	10	ligand length
b	SAS	A Features
1	1	positive
1	12	negative
1	13	donor-acceptor
1	14	donor
1	15	acceptor
1	16	aromatic
1	17	hydrophobic
1	18	polar
1	19	halogen
2	20	total bSASA

D Descritores relacionados à sequência de aminoácidos

Aminoácido	3 Letras	1 Letra
alanine	ala	А
arginine	arg	R
asparagine	asn	Ν
aspartic acid	asp	D
cysteine	cys	С
glutamine	gln	Q
glutamic acid	glu	Е
glycine	gly	G
histidine	his	Н
isoleucine	ile	Ι
leucine	leu	L
lysine	lys	Κ
methionine	met	Μ
phenylalanine	phe	F
proline	pro	Р
serine	ser	S
threonine	thr	Т
tryptophan	trp	W
tyrosine	tyr	Y
valine	val	V

Tabela 43: Os 20 aminoácidos. Fonte: (LYONS, 2015).
E Descritores relacionados à estrutura secundária das proteínas

Tabela 44: Caracteristicas da estrutura secundária das proteínas. Fonte: (KUNDU; PAUL; BANERJEE, 2018).

Accessible surface of protein Number of hydrogen bonds in antiparallel bridges and parallel bridges Number of hydrogen bonds of type: - O(I) H–N(I-5) - O(I) H–N(I-4) - O(I) H-N(I-3) - O(I) H-N(I-2) - O(I) H–N(I-1) - O(I) H-N(I+0) - O(I) H–N(I+1) - O(I) H–N(I+2) - O(I) H-N(I+3) - O(I) H–N(I+4) - O(I) H - N(I+5)Number of chains Number of ss bridge Number of residues

F PaDEL Descritores

Tipo Descritor	Quantidade	Descritores			
Atom count	14	nAtom, nHeavyAtom, nH, nB, nC, nN, nO, nS, nP, nF, nCl,			
		nBr, nI, nX			
Bond count	10	nBonds, nBonds2, nBondsS, nBondsS2, nBondsS3,			
		nBondsD, nBondsD2, nBondsT, nBondsQ, nBondsM			
Ring count	68	nRing, n3Ring, n4Ring, n5Ring, n6Ring, n7Ring, n8Ring,			
		n9Ring, n10Ring, n11Ring, n12Ring, nG12Ring, nFRing,			
		nF4Ring, nF5Ring, nF6Ring, nF7Ring, nF8Ring, nF9Ring,			
		nF10Ring, nF11Ring, nF12Ring, nFG12Ring, nHete-			
		roRing, n3HeteroRing, n4HeteroRing, n5HeteroRing,			
		n6HeteroRing, n7HeteroRing, n8HeteroRing,			
		n9HeteroRing, n10HeteroRing, n11HeteroRing,			
		n12HeteroRing, nG12HeteroRing, nFHeteroRing,			
		nF4HeteroRing, nF5HeteroRing, nF6HeteroRing,			
		nF7HeteroRing, nF8HeteroRing, nF9HeteroRing,			
		nF10HeteroRing, nF11HeteroRing, nF12HeteroRing,			
		nFG12HeteroRing, nTHeteroRing, nT4HeteroRing,			
		nT5HeteroRing, nT6HeteroRing, nT7HeteroRing,			
		nT8HeteroRing, nT9HeteroRing, nT10HeteroRing,			
		nT11HeteroRing, nT12HeteroRing, nTG12HeteroRing			

Tabela 45: Características bidimensionais dos ligantes calculadas com o PaDELdescriptor. Fonte: (YAP, 2011).

G Descritores BINANA (BINding ANAlyzer)

Тіро	Descrição	
Close Contacts	Identifica todos os átomos de proteína e ligante	A_A, A_C, A_CL, A_F, A_FE, A_HD, A_MG, A_MN, A_N, A_NA, A_OA, A_SA, A_ZN, BR_C, BR_HD, BR_OA, C_C,
	que estão a 2,5 Å um do outro.	C.CL, C.F, C.HD, C.MG, C.MN, C.N, C.NA, C.OA, C.SA, C.ZN, CL.FE, CL.HD, CL.MG, CL.N, CL.OA, CL.ZN,
		F_HD, F_N, F_OA, F_SA, FE_HD, FE_N, FE_OA, HD_HD, HD_I, HD_MG, HD_MN, HD_N, HD_NA, HD_OA, HD_P,
		HD_S, HD_SA, HD_ZN, MG_NA, MG_OA, MN_N, MN_OA, N_N, N_NA, N_OA, N_SA, N_ZN, NA_OA, NA_SA,
		NA_ZN, OA_OA, OA_SA, OA_ZN,S_ZN,SA_ZN, A_BR, A_I, A_P, A_S, BR_N, BR_SA, C_FE, C_I, C_P, C_S, CL_MN,
		CL_NA, CL_P, CL_S, CL_SA, CU_HD, CU_N, FE_NA, FE_SA,I_N, I_OA, MG_N, MG_P, MG_S, MG_SA, MN_NA,
		MN_P, MN_S, MN_SA, N_P, N_S, NA_P, NA_S, OA_P, OA_S,P_S, P_SA,P_ZN,S_SA,SA_SA, A_CU, C_CD
Electrostatic Interacti-	Para cada par de átomos que estão dentro de 4,0	ele_rec_types, ele_mol_atoms, ele_rec_atoms
ons	Å um ao outro, é calculada uma energia ele-	
	trostática usando as cargas parciais de Gastei-	
	ger.	
Active site flexibility	Fornece informações úteis sobre a flexibilidade	as_flex_backbone_alpha, as_flex_backbone_beta, as_flex_backbone_other, as_flex_sidechain_alpha,
	do sítio de ligação.	as_flex_sidechain_beta, as_flex_sidechain_other, as_flex_all
Hydrophobic Contact	Identifica contatos hidrofóbicos que são classi-	hyd_4_backbone_alpha, hyd_4_backbone_beta, hyd_4_backbone_other, hyd_4_sidechain_alpha, hyd_4_sidechain_beta,
	ficados de acordo com a flexibilidade do átomo	hyd_4_sidechain_other, hyd_4_all
	de carbono do receptor.	
Hydrogen Bonds	Calcula o número de ligações de hidrogênio de	hb_4_mol_backbone_alpha, hb_4_mol_backbone_beta, hb_4_mol_backbone_other, hb_4_mol_sidechain_alpha,
	acordo com a estrutura secundária do átomo re-	hb.4_mol_sidechain_beta, hb.4_mol_sidechain_other, hb.4_rec_backbone_alpha, hb.4_rec_backbone_beta,
	ceptor, o estado da cadeia lateral/espinha dorsal	hb_4_rec_backbone_other, hb_4_rec_sidechain_alpha, hb_4_rec_sidechain_beta, hb_4_rec_sidechain_other
	do átomo receptor e a localização do doador da	
	ligação de hidrogênio.	
Salt bridges	Identifca possíveis pontes de sal que ligam o li-	salt_bridge_5.5_alpha, salt_bridge_5.5_beta, salt_bridge_5.5_other, salt_bridge_5.5_all
	gante ao receptor.	
π Interactions	Detecta anéis aromáticos de resíduos não pro-	pi_stack_7.5_alpha, pi_stack_7.5_beta, pi_stack_7.5_other, pi_t_7.5_alpha, pi_t_7.5_beta, pi_t_7.5_other,
	teicos.	pi_cat_mol_6_alpha, pi_cat_mol_6_beta, pi_cat_mol_6_other, pi_cat_rec_6_alpha,pi_cat_rec_6_beta, pi_cat_rec_6_other
Ligand Atom Types and	Conta tanto o número de átomos presentes no	A, BR, C, CL, F, HD, I, N, NA, OA, P, S, SA, num_rotors
Rotatable Bonds	ligante, quanto o número de ligações de enlaces	
	rotativos identificados.	

Tabela 46: Características calculadas com o BINANA (BINding ANAlyzer). Fonte: (DURRANT; MCCAMMON, 2011b).

H Descritores gerados com RDKit

Tabela 47: Características bidimensionais e tridimensionais dos ligantes calculadas com o RDKit. Fonte: (LANDRUM, 2013).

Тіро	Descritores
2D descriptors	BalabanJ, BertzCT, Ipc, HallKierAlpha, Kappa1, Kappa2, Kappa3, Chi0, Chi1,
	Chi0n, Chi1n, Chi2n, Chi3n, Chi4n, Chi0v, Chi1v, Chi2v, Chi3v, Chi4v, MolLogP,
	MolMR, MolWt, ExactMolWt, HeavyAtomCount, HeavyAtomMolWt, NHOH-
	Count, NOCount, NumHAcceptors, NumHDonors, NumHeteroatoms, NumRotata-
	bleBonds, NumValenceElectrons, NumAmideBonds, NumAromaticRings, NumSa-
	turatedRings, NumAliphaticRings, NumAromaticHeterocycles, NumSaturatedHete-
	rocycles, NumAliphaticHeterocycles, NumAromaticCarbocycles, NumSaturatedCar-
	bocycles, NumAliphaticCarbocycles, RingCount, FractionCSP3, NumSpiroAtoms,
	NumBridgeheadAtoms, TPSA, LabuteASA, PEOE_VSA1, PEOE_VSA2, PEOE_VSA3,
	PEOE_VSA4, PEOE_VSA5, PEOE_VSA6, PEOE_VSA7, PEOE_VSA8, PEOE_VSA9,
	PEOE_VSA10, PEOE_VSA11, PEOE_VSA12, PEOE_VSA13, PEOE_VSA14,
	SMR_VSA1, SMR_VSA2, SMR_VSA3, SMR_VSA4, SMR_VSA5, SMR_VSA6,
	SMR_VSA7, SMR_VSA8, SMR_VSA9, SMR_VSA10, SlogP_VSA1, SlogP_VSA2,
	SlogP_VSA3, SlogP_VSA4, SlogP_VSA5, SlogP_VSA6, SlogP_VSA7, SlogP_VSA8,
	SlogP_VSA9, SlogP_VSA10, SlogP_VSA11, SlogP_VSA12, EState_VSA1, EState_VSA2,
	EState_VSA3, EState_VSA4, EState_VSA5, EState_VSA6, EState_VSA7, EState_VSA8,
	EState_VSA9, EState_VSA10, EState_VSA11, VSA_EState1, VSA_EState2, VSA_EState3,
	VSA_EState4, VSA_EState5, VSA_EState6, VSA_EState7, VSA_EState8, VSA_EState9,
	VSA_EState10, MQNs_atom_counts_c, MQNs_atom_counts_f, MQNs_atom_counts_cl,
	MQNs_atom_counts_br, MQNs_atom_counts_i, MQNs_atom_counts_s,
	MQNs_atom_counts_p, MQNs_atom_counts_an, MQNs_atom_counts_cn,
	MQNs_atom_counts_ao, MQNs_atom_counts_co, MQNs_atom_counts_hac,
	MQNs_bond_counts_asb, MQNs_bond_counts_adb, MQNs_bond_counts_atb,
	MQNs_bond_counts_csb, MQNs_bond_counts_cdb, MQNs_bond_counts_ctb,
	MQNs_bond_counts_rbc, MQNs_polarity_counts_hbam, MQNs_polarity_counts_hba,
	MQNs_polarity_counts_hbdm, MQNs_polarity_counts_hbd, MQNs_polarity_counts_negc,
	MQNs_polarity_counts_posc, MQNs_topology_counts_asv, MQNs_topology_counts_adv,
	MQNs_topology_counts_atv, MQNs_topology_counts_aqv, MQNs_topology_counts_cdv,
	MQNs_topology_counts_ctv, MQNs_topology_counts_cqv, MQNs_topology_counts_r3,
	MQNs_topology_counts_r4, MQNs_topology_counts_r5, MQNs_topology_counts_r6,
	MQNs_topology_counts_r7, MQNs_topology_counts_r8, MQNs_topology_counts_rg,
	MQNs_topology_counts_rgIO, MQNs_topology_counts_afrc, MQNs_topology_counts_bfrc
3D descriptors	PBF, PMI1, PMI2, PMI3, NPR1, NPR2, RadiusOfGyration, InertialShapeFactor, Eccentri-
	city, Asphericity, SpherocityIndex

ANEXO B EXPERIMENTOS

A Experimento Nro. 1

A.1 Metodologia Aplicada

Figura 51: Experimento 1 - Metodologia Aplicada.

A.2 Conjuntos de Treinamento e Teste

Tabela 4	8: Experimento	1 - Conjuntos de	Treinamento	e Teste.
	Conjunto	ID	Tamanho	
	Treinamento	refined_set13	2959	

- J		
Treinamento	refined-set13	2959
	core-set13	195
Teste	docking-set13	19500
	screening-set13	633750

A.3 Descritores

Tabela 49: Experiment	to 1 - Descritores.
-----------------------	---------------------

ID	Tamanho
rf-score36	36

A.4 Atributo Alvo

$$score = -LogKd$$
 (15)

A.5 Modelos Preditivos

Tabela 50: Experimento 1 - Configuração dos modelos preditivos.

Método	ID	Treino	Kernel	Parâmetros
	CONSTANT	refined-set13	constant	Padrão
	DOT_PRODUCT	refined-set13	dot-product	Padrão
	DOT_PRODUCT*CONSTANT	refined-set13	dot-product*constant	Padrão
	DOT_PRODUCT+WHITE	refined-set13	dot-product+white	Padrão
	EXP_SINE_SQUARED	refined-set13	exp-sine-squared	Padrão
	EXP_SINE_SQUARED*CONSTANT	refined-set13	exp-sine-squared*constant	Padrão
	EXP_SINE_SQUARED+WHITE	refined-set13	exp-sine-squared+white	Padrão
	MATERN	refined-set13	matern	Padrão
Gaussian Process	MATERN*CONSTANT	refined-set13	matern*constant	Padrão
	MATERN+WHITE	refined-set13	matern+white	Padrão
	RATIONAL_QUADRATIC	refined-set13	rational-quadratic	Padrão
	RATIONAL_QUADRATIC*CONSTANT	refined-set13	rational-quadratic*constant	Padrão
	RATIONAL_QUADRATIC+WHITE	refined-set13	rational-quadratic+white	Padrão
	RBF	refined-set13	rbf	Padrão
	RBF+CONSTANT	refined-set13	rbf*constant	Padrão
	RBF+WHITE	refined-set13	rbf+white	Padrão
	WHITE	refined-set13	white	Padrão

A.6 Resultados

A.6.1 Scoring Power

scoring functions	N	R	SD
RF@ML	164	0.704	1.64
BRT@ML	164	0.694	1.65
RATIONAL_QUADRATIC	195	0.675	1.66
RATIONAL_QUADRATIC + WHITE	195	0.675	1.66
RATIONAL_QUADRATIC * CONSTANT	195	0.675	1.66
kNN@ML	164	0.672	1.65
MATERN + WHITE	195	0.662	1.69
RBF + WHITE	195	0.636	1.74
MARS@ML	164	0.614	1.76
NN@ML	164	0.606	1.78
DOT_PRODUCT + WHITE	195	0.6	1.8
PLSR@ML	164	0.59	1.81
PCR@ML	164	0.59	1.81
LR@ML	164	0.59	1.81
MLR@ML	164	0.59	1.81
RR@ML	164	0.589	1.85
SVM@ML	164	0.564	1.94
DT@ML	164	0.471	1.96
MATERN	195	0.379	2.09
MATERN * CONSTANT	195	0.379	2.09
EXP_SINE_SQUARED + WHITE	195	0.073	2.25
RBF	193	-0.14	2.22
RBF * CONSTANT	193	-0.14	2.22
CONSTANT	-	-	-
WHITE	-	-	-
EXP_SINE_SQUARED * CONSTANT	-	-	-
DOT_PRODUCT * CONSTANT	-	-	-
EXP_SINE_SQUARED	-	-	-
DOT_PRODUCT	-	-	-

Tabela 51: Experimento 1 - Desempenho das funções de escore no CASF-2013 no teste do *Scoring Power*. Adaptado de: KHAMIS; GOMAA (2015).

scoring functions	Ν	SP
RF@ML	164	0.697
BRT@ML	164	0.685
kNN@ML	164	0.653
SVM@ML	164	0.653
NN@ML	164	0.623
PLSR@ML	164	0.615
PCR@ML	164	0.615
LR@ML	164	0.615
MLR@ML	164	0.615
RR@ML	164	0.613
MARS@ML	164	0.607
MATERN + WHITE	195	0.571
RBF + WHITE	195	0.556
RATIONAL_QUADRATIC	195	0.484
RATIONAL_QUADRATIC + WHITE	195	0.484
DOT_PRODUCT + WHITE	195	0.484
RATIONAL_QUADRATIC * CONSTANT	195	0.484
DT@ML	164	0.471
MATERN	195	0.286
MATERN * CONSTANT	195	0.286
EXP_SINE_SQUARED + WHITE	195	0.079
RBF	193	-0.103
RBF * CONSTANT	193	-0.103
CONSTANT	-	-
WHITE	-	-
EXP_SINE_SQUARED	-	-
DOT_PRODUCT	-	-
EXP_SINE_SQUARED * CONSTANT	-	-
DOT_PRODUCT * CONSTANT	-	-

Tabela 52: Experimento 1 - Desempenho das funções de escore no CASF-2013 no teste do *Ranking Power*. Adaptado de: KHAMIS; GOMAA (2015).

A.6.3 Docking Power

scoring function	TOP1	TOP2	TOP3
EXP_SINE_SQUARED + WHITE	20.51	38.97	50.77
DOT_PRODUCT + WHITE	16.41	26.15	35.9
SVM@ML	14.3	19.6	21.7
BRT@ML	13.8	23.3	31.7
RF@ML	13.8	23.3	31.2
PLSR@ML	12.2	22.8	31.2
PCR@ML	12.2	22.8	31.2
LR@ML	12.2	22.8	31.2
MLR@ML	12.2	22.8	31.2
MARS@ML	11.6	17.5	23.3
RR@ML	11.1	15.9	24.9
DT@ML	10.6	19	22.2
RATIONAL_QUADRATIC	9.74	19.49	25.64
RATIONAL_QUADRATIC + WHITE	9.74	19.49	25.64
RATIONAL_QUADRATIC * CONSTANT	9.74	19.49	25.64
MATERN + WHITE	9.74	15.9	29.23
MATERN	9.74	12.31	18.97
MATERN * CONSTANT	9.74	12.31	18.97
NN@ML	9	16.9	19
RBF + WHITE	8.72	18.97	29.74
RBF	8.72	18.97	24.62
RBF * CONSTANT	8.72	18.97	24.62
kNN@ML	6.9	17.5	23.3
CONSTANT	-	-	-
WHITE	-	-	-
EXP_SINE_SQUARED	-	-	-
DOT_PRODUCT	-	-	-
EXP_SINE_SQUARED * CONSTANT	-	-	-
DOT_PRODUCT * CONSTANT	-	-	-

Tabela 53: Experimento 1 - Desempenho das funções de escore no CASF-2013 no teste do *Docking Power*. Adaptado de: KHAMIS; GOMAA (2015).

scoring function	EF1%	EF5%	EF10%
SVM@ML	3.76	2.15	1.51
RBF	2.56	1.33	1.64
RBF * CONSTANT	2.56	1.33	1.64
RF@ML	2.15	1.18	1.13
RR@ML	2.15	1.18	1.13
DT@ML	1.61	1.08	1.34
kNN@ML	1.61	0.97	1.08
EXP_SINE_SQUARED + WHITE	1.54	1.54	1.33
MATERN	1.54	1.33	1.28
MATERN * CONSTANT	1.54	1.33	1.28
BRT@ML	1.08	1.29	1.45
MARS@ML	1.08	1.18	1.18
NN@ML	1.08	1.08	1.08
RBF + WHITE	1.03	1.23	1.13
DOT_PRODUCT + WHITE	1.03	1.23	0.97
MATERN + WHITE	0.51	0.92	1.08
PLSR@ML	0	1.08	0.97
PCR@ML	0	1.08	0.97
LR@ML	0	1.08	0.97
MLR@ML	0	1.08	0.97
RATIONAL_QUADRATIC	0	1.03	0.97
RATIONAL_QUADRATIC + WHITE	0	1.03	0.97
RATIONAL_QUADRATIC * CONSTANT	0	1.03	0.97
CONSTANT	-	-	-
WHITE	-	-	
EXP_SINE_SQUARED	-	-	-
DOT_PRODUCT	-	-	
EXP_SINE_SQUARED * CONSTANT	-	-	-
DOT_PRODUCT * CONSTANT	-	-	-

Tabela 54: Experimento 1 - Desempenho das funções de escore no CASF-2013 no teste do *Screening Power (Enhancement Factor)*. Adaptado de: KHAMIS; GOMAA (2015).

	TODIC		(2010). TOD100
scoring function	TOPI%	TOP5%	10110%
RF@ML	6.45	14.5	25.8
RR@ML	6.45	14.5	22.6
SVM@ML	6.45	12.9	17.7
BRT@ML	3.23	16.1	32.3
MARS@ML	3.23	14.5	27.4
kNN@ML	3.23	9.68	21
DOT_PRODUCT + WHITE	3.08	13.85	20
RBF + WHITE	3.08	12.31	23.08
MATERN	3.08	9.23	21.54
MATERN * CONSTANT	3.08	9.23	21.54
RBF	3.08	6.15	18.46
RBF * CONSTANT	3.08	6.15	18.46
EXP_SINE_SQUARED + WHITE	1.54	12.31	23.08
MATERN + WHITE	1.54	10.77	20
RATIONAL_QUADRATIC	0	10.77	16.92
RATIONAL_QUADRATIC + WHITE	0	10.77	16.92
RATIONAL_QUADRATIC * CONSTANT	0	10.77	16.92
DT@ML	0	9.68	22.6
PLSR@ML	0	9.68	21
PCR@ML	0	9.68	21
LR@ML	0	9.68	21
MLR@ML	0	9.68	21
NN@ML	0	4.84	9.68
CONSTANT	-	-	-
WHITE	-	-	-
EXP_SINE_SQUARED	-	-	-
DOT_PRODUCT	-	-	-
EXP_SINE_SQUARED * CONSTANT	-	-	-
DOT_PRODUCT * CONSTANT	-	-	_

Tabela 55: Experimento 1 - Desempenho das funções de escore no CASF-2013 no teste do *Screening Power (Success Rate)*. Adaptado de: KHAMIS; GOMAA (2015).

B Experimento Nro. 2

B.1 Metodologia Aplicada

Figura 52: Experimento 2 - Metodologia Aplicada.

B.2 Conjuntos de Treinamento e Teste

Tabela 56:	Experimento	2 - Conjuntos de	e Treinament	o e Teste.

Conjunto	ID	Tamanho
Treinamento	refined-set07	1005
	core-set09	195
Teste	csar-set10	343
	csar-set12	34

B.3 Descritores

	Tabela	57:	Experimente	o 2 -	Descritores.
--	--------	-----	-------------	-------	--------------

ID	Tamanho
sfcscore63	63

B.4 Atributo Alvo

$$score = -LogKd$$
 (16)

B.5 Modelos Preditivos

Tabela 58: Experimento 2 - Configuração dos modelos preditivos.

Método	ID	Treino	Kernel	Parâmetros
	DOT_PRODUCT	refined-set13	dot-product	Padrão
	EXP_SINE_SQUARED	refined-set13	exp-sine-squared	Padrão
	EXP_SINE_SQUARED*CONSTANT	refined-set13	exp-sine-squared*constant	Padrão
	MATERN	refined-set13	matern	Padrão
	MATERN*CONSTANT	refined-set13	matern*constant	Padrão
Gaussian Process	MATERN+WHITE	refined-set13	matern+white	Padrão
Gaussian Flocess	RATIONAL_QUADRATIC	refined-set13	rational-quadratic	Padrão
	RATIONAL_QUADRATIC*CONSTANT	refined-set13	rational-quadratic*constant	Padrão
	RATIONAL_QUADRATIC+WHITE	refined-set13	rational-quadratic+white	Padrão
	RBF	refined-set13	rbf	Padrão
	RBF+CONSTANT	refined-set13	rbf*constant	Padrão
	RBF+WHITE	refined-set13	rbf+white	Padrão

B.6 Resultados

B.6.1 PDBbind Benchmark Set (Scoring Power)

Tabela 59: Experimento 2 - Desempenho das funções de escore no PDBbind Benchmark Set no teste do *Scoring Power*. Adaptado de: ZILIAN; SOTRIFFER (2013).

scoring function	R
sfc_rf	0.781
RATIONAL_QUADRATIC*CONSTANT	0.752
RATIONAL_QUADRATIC	0.752
RATIONAL_QUADRATIC+WHITE	0.752
MATERN+WHITE	0.726
MATERN*CONSTANT	0.676
MATERN	0.676
RBF+WHITE	0.672
DOT_PRODUCT+WHITE	0.637
RBF*CONSTANT	0.368
RBF	0.368
EXP_SINE_SQUARED	-0.176
EXP_SINE_SQUARED*CONSTANT	-

B.6.2 CSAR-NRC 2010

Tabela 60: Experimento 2 - Desempenho das funções de escore no CSAR-NRC 2010. Adaptado de: ZILIAN; SOTRIFFER (2013).

scoring function	R
sfc_rf	0.729
RATIONAL_QUADRATIC*CONSTANT	0.684
RATIONAL_QUADRATIC	0.684
RATIONAL_QUADRATIC+WHITE	0.684
RBF+WHITE	0.678
MATERN+WHITE	0.671
DOT_PRODUCT+WHITE	0.586
MATERN*CONSTANT	0.544
MATERN	0.544
RBF*CONSTANT	0.218
RBF	0.218
EXP_SINE_SQUARED	0.085
EXP_SINE_SQUARED*CONSTANT	-

B.6.3 CSAR 2012: CHK1 - ERK2 - LPXC

scoring function	CHK1	ERK2	LPXC
sfc_rf	0.054	0.417	0.87
DOT_PRODUCT+WHITE	-0.21	0.042	0.822
RATIONAL_QUADRATIC*CONSTANT	-0.027	0.49	0.731
RATIONAL_QUADRATIC	-0.027	0.49	0.731
RBF+WHITE	0.051	0.442	0.73
RATIONAL_QUADRATIC+WHITE	-0.027	0.488	0.729
MATERN+WHITE	0.062	0.453	0.695
MATERN*CONSTANT	0.058	0.351	0.567
MATERN	0.058	0.351	0.567
RBF*CONSTANT	0.159	0.244	0.458
RBF	0.159	0.244	0.458
EXP_SINE_SQUARED	-0.714	-0.921	-
EXP_SINE_SQUARED*CONSTANT	-	-	-

Tabela 61: Experimento 2 - Desempenho das funções de escore no CSAR 2012. Adaptado de: ZILIAN; SOTRIFFER (2013).

C Experimento Nro. 3

C.1 Metodologia Aplicada

Figura 53: Experimento 3 - Metodologia Aplicada.

C.2 Conjuntos de Treinamento e Teste

Tabela 62: Experimento 2 - Conjuntos de Treinamento e Teste.

Conjunto	ID	Tamanho
Trainamento	refined-set16B	3728
memamento	refined-set18B	4152
Teste	core-set16	343

C.3 Descritores

ID	Tamanho
deltavina20	20

C.4 Atributo Alvo

$$score = -LogKd$$
 (17)

C.5 Modelos Preditivos

Método	ID	Treino	Kernel	Parâmetros
Dandom Forast	RANDOM_FOREST@2016	refined-set16B	-	$n_{\text{estimators}} = 500$
Kalluolli Folest	RANDOM_FOREST@2018	refined-set18B	-	$n_{\text{estimators}} = 500$
	DOT_PRODUCT@2016	refined-set16B	dot-product	Padrão
	EXP_SINE_SQUARED@2016	refined-set16B	exp-sine-squared	Padrão
	EXP_SINE_SQUARED*CONSTANT@2016	refined-set16B	exp-sine-squared*constant	Padrão
	MATERN@2016	refined-set16B	matern	Padrão
	MATERN*CONSTANT@2016	refined-set16B	matern*constant	Padrão
	MATERN+WHITE@2016	refined-set16B	matern+white	Padrão
	RATIONAL_QUADRATIC@2016	refined-set16B	rational-quadratic	Padrão
	RATIONAL_QUADRATIC*CONSTANT@2016	refined-set16B	rational-quadratic*constant	Padrão
	RATIONAL_QUADRATIC+WHITE@2016	refined-set16B	rational-quadratic+white	Padrão
	RBF@2016	refined-set16B	rbf	Padrão
	RBF+CONSTANT@2016	refined-set16B	rbf*constant	Padrão
Gaussian Process	RBF+WHITE@2016	refined-set16B	rbf+white	Padrão
Gaussian 1 10ccss	DOT_PRODUCT@2018	refined-set18B	dot-product	Padrão
	EXP_SINE_SQUARED@2018	refined-set18B	exp-sine-squared	Padrão
	EXP_SINE_SQUARED*CONSTANT@2018	refined-set18B	exp-sine-squared*constant	Padrão
	MATERN@2018	refined-set18B	matern	Padrão
	MATERN*CONSTANT@2018	refined-set18B	matern*constant	Padrão
	MATERN+WHITE@2018	refined-set18B	matern+white	Padrão
	RATIONAL_QUADRATIC@2018	refined-set18B	rational-quadratic	Padrão
	RATIONAL_QUADRATIC*CONSTANT@2018	refined-set18B	rational-quadratic*constant	Padrão
	RATIONAL_QUADRATIC+WHITE@2018	refined-set18B	rational-quadratic+white	Padrão
	RBF@2018	refined-set18B	rbf	Padrão
	RBF+CONSTANT@2018	refined-set18B	rbf*constant	Padrão
	RBF+WHITE@2018	refined-set18B	rbf+white	Padrão

Tabela 64: Experimento 3 - Configuração dos modelos preditivos.

C.6 Resultados

C.6.1 Scoring Power

Tabela 65:	Experimento 3 -	Desempenho	das funções	de escore no	CASF-2016	no teste
do Scoring	Power.					

Ν	R	SD
285	0.696	1.56
285	0.663	1.63
285	0.634	1.68
285	0.623	1.7
285	0.622	1.7
285	0.621	1.7
285	0.621	1.7
285	0.614	1.72
285	0.611	1.72
285	0.611	1.72
285	0.611	1.72
285	0.604	1.73
285	0.604	1.73
285	0.592	1.75
285	0.591	1.75
285	0.583	1.77
285	0.427	1.97
285	0.427	1.97
285	0.41	1.98
285	0.41	1.98
284	0.076	2.17
284	0.076	2.17
283	0.048	2.18
283	0.048	2.18
	N 285 284 283 283	NR2850.6962850.6342850.6232850.6232850.6212850.6212850.6212850.6112850.6112850.6042850.6042850.5922850.5912850.4272850.4112850.4112850.4272850.412840.0762830.0482830.048

C.6.2 Ranking Power

Tabela 66:	Experimento	3 - Desem	penho das	s funções	de escor	e no	CASF-2016	no	teste
do Ranking	g Power.								

scoring function	SP	tau	PI
DOT_PRODUCT+WHITE@2016	0.591	0.509	0.612
DOT_PRODUCT+WHITE@2018	0.581	0.502	0.6
RBF+WHITE@2018	0.546	0.474	0.568
RANDOM_FOREST@2018	0.535	0.453	0.557
RBF+WHITE@2016	0.532	0.467	0.542
EXP_SINE_SQUARED+WHITE@2018	0.521	0.456	0.544
EXP_SINE_SQUARED+WHITE@2016	0.519	0.46	0.543
MATERN+WHITE@2018	0.518	0.463	0.533
MATERN+WHITE@2016	0.474	0.411	0.491
RANDOM_FOREST@2016	0.468	0.407	0.489
RATIONAL_QUADRATIC@2018	0.453	0.382	0.473
RATIONAL_QUADRATIC*CONSTANT@2018	0.453	0.382	0.473
RATIONAL_QUADRATIC@2016	0.433	0.379	0.451
RATIONAL_QUADRATIC*CONSTANT@2016	0.433	0.379	0.451
RATIONAL_QUADRATIC+WHITE@2018	0.426	0.361	0.445
RATIONAL_QUADRATIC+WHITE@2016	0.409	0.358	0.426
MATERN@2016	0.253	0.189	0.247
MATERN*CONSTANT@2016	0.253	0.189	0.247
MATERN@2018	0.242	0.189	0.239
MATERN*CONSTANT@2018	0.242	0.189	0.239
RBF@2018	0	0.039	-0.001
RBF*CONSTANT@2018	0	0.039	-0.001
RBF@2016	-0.014	0.014	-0.017
RBF*CONSTANT@2016	-0.014	0.014	-0.017

D Experimento Nro. 4

D.1 Metodologia Aplicada

Figura 54: Experimento 4 - Metodologia Aplicada.

D.2 Conjuntos de Treinamento e Teste

Tabela 67: Experimento 4 - Conjuntos de Treinamento e Teste.

Conjunto	ID	Tamanho
Trainamento	refined-set16A	1736
Tremamento	refined-set18A	2085
Teste	core-set16	343

D.3 Descritores

Tabela 68: Exp	erimento 4 -	Descritores.
----------------	--------------	--------------

ID	Tamanho
deltavina20	20

D.4 Atributo Alvo

$$score = -LogKd$$
 (18)

D.5 Modelos Preditivos

Método	ID	Treino	Kernel	Parâmetros
Dandom Forast	RANDOM_FOREST@2016	refined-set16A	-	$n_{\text{estimators}} = 500$
Kalidolli Folest	RANDOM_FOREST@2018	refined-set18A	-	$n_{estimators} = 500$
	DOT_PRODUCT@2016	refined-set16A	dot-product	Padrão
	EXP_SINE_SQUARED@2016	refined-set16A	exp-sine-squared	Padrão
	EXP_SINE_SQUARED*CONSTANT@2016	refined-set16A	exp-sine-squared*constant	Padrão
	MATERN@2016	refined-set16A	matern	Padrão
	MATERN*CONSTANT@2016	refined-set16A	matern*constant	Padrão
	MATERN+WHITE@2016	refined-set16A	matern+white	Padrão
	RATIONAL_QUADRATIC@2016	refined-set16A	rational-quadratic	Padrão
	RATIONAL_QUADRATIC*CONSTANT@2016	refined-set16A	rational-quadratic*constant	Padrão
	RATIONAL_QUADRATIC+WHITE@2016	refined-set16A	rational-quadratic+white	Padrão
	RBF@2016	refined-set16A	rbf	Padrão
	RBF+CONSTANT@2016	refined-set16A	rbf*constant	Padrão
Gaussian Process	RBF+WHITE@2016	refined-set16A	rbf+white	Padrão
Gaussian Flocess	DOT_PRODUCT@2018	refined-set18A	dot-product	Padrão
	EXP_SINE_SQUARED@2018	refined-set18A	exp-sine-squared	Padrão
	EXP_SINE_SQUARED*CONSTANT@2018	refined-set18A	exp-sine-squared*constant	Padrão
	MATERN@2018	refined-set18A	matern	Padrão
	MATERN*CONSTANT@2018	refined-set18A	matern*constant	Padrão
	MATERN+WHITE@2018	refined-set18A	matern+white	Padrão
	RATIONAL_QUADRATIC@2018	refined-set18A	rational-quadratic	Padrão
	RATIONAL_QUADRATIC*CONSTANT@2018	refined-set18A	rational-quadratic*constant	Padrão
	RATIONAL_QUADRATIC+WHITE@2018	refined-set18A	rational-quadratic+white	Padrão
	RBF@2018	refined-set18A	rbf	Padrão
	RBF+CONSTANT@2018	refined-set18A	rbf*constant	Padrão
	RBF+WHITE@2018	refined-set18A	rbf+white	Padrão

Tabela 69: Experimento 4 - Configuração dos modelos preditivos.

D.6 Resultados

D.6.1 Scoring Power

scoring function	Ν	R	SD
RANDOM_FOREST@2018	285	0.651	1.65
RANDOM_FOREST@2016	285	0.617	1.71
MATERN@2018	285	0.61	1.72
MATERN*CONSTANT@2018	285	0.61	1.72
RBF@2016	285	0.606	1.73
RBF*CONSTANT@2016	285	0.606	1.73
RBF@2018	285	0.605	1.73
RBF*CONSTANT@2018	285	0.605	1.73
EXP_SINE_SQUARED+WHITE@2018	285	0.604	1.73
EXP_SINE_SQUARED+WHITE@2016	285	0.604	1.73
EXP_SINE_SQUARED*CONSTANT@2018	285	0.604	1.73
EXP_SINE_SQUARED*CONSTANT@2016	285	0.604	1.73
EXP_SINE_SQUARED@2018	285	0.602	1.74
EXP_SINE_SQUARED@2016	285	0.602	1.74
MATERN@2016	285	0.601	1.74
MATERN*CONSTANT@2016	285	0.601	1.74
RATIONAL_QUADRATIC@2018	285	0.563	1.8
RATIONAL_QUADRATIC*CONSTANT@2018	285	0.563	1.8
RATIONAL_QUADRATIC+WHITE@2018	285	0.56	1.8
MATERN+WHITE@2018	285	0.55	1.82
RBF+WHITE@2018	285	0.549	1.82
RATIONAL_QUADRATIC@2016	285	0.544	1.82
RATIONAL_QUADRATIC+WHITE@2016	285	0.544	1.82
RATIONAL_QUADRATIC*CONSTANT@2016	285	0.544	1.82
RBF+WHITE@2016	285	0.537	1.83
MATERN+WHITE@2016	285	0.534	1.84
DOT_PRODUCT+WHITE@2018	285	0.523	1.85

Tabela 70: Experimento 4 - Desempenho das funções de escore no CASF-2016 no teste do *Scoring Power*.

D.6.2 Ranking Power

scoring function	SP	tau	PI
RANDOM_FOREST@2018	0.54	0.449	0.569
RBF@2016	0.535	0.456	0.564
RBF*CONSTANT@2016	0.535	0.456	0.564
MATERN@2018	0.533	0.453	0.562
MATERN*CONSTANT@2018	0.533	0.453	0.562
EXP_SINE_SQUARED@2018	0.53	0.456	0.558
EXP_SINE_SQUARED@2016	0.53	0.456	0.558
CONSTANT@2018	0.528	0.453	0.557
CONSTANT@2016	0.528	0.453	0.557
WHITE@2018	0.528	0.453	0.557
WHITE@2016	0.528	0.453	0.557
RBF@2018	0.528	0.453	0.557
EXP_SINE_SQUARED+WHITE@2018	0.528	0.453	0.557
EXP_SINE_SQUARED+WHITE@2016	0.528	0.453	0.557
RBF*CONSTANT@2018	0.528	0.453	0.557
EXP_SINE_SQUARED*CONSTANT@2018	0.528	0.453	0.557
EXP_SINE_SQUARED*CONSTANT@2016	0.528	0.453	0.557
RBF+WHITE@2016	0.516	0.428	0.549
MATERN@2016	0.5	0.421	0.527
MATERN*CONSTANT@2016	0.5	0.421	0.527
RATIONAL_QUADRATIC@2018	0.493	0.4	0.526
RATIONAL_QUADRATIC*CONSTANT@2018	0.493	0.4	0.526
DOT_PRODUCT+WHITE@2016	0.491	0.4	0.527
RANDOM_FOREST@2016	0.491	0.393	0.525
DOT_PRODUCT+WHITE@2018	0.491	0.375	0.522
RATIONAL_QUADRATIC@2016	0.488	0.404	0.515
RATIONAL_QUADRATIC*CONSTANT@2016	0.488	0.404	0.515
RBF+WHITE@2018	0.484	0.396	0.517
RATIONAL_QUADRATIC+WHITE@2016	0.479	0.404	0.504
MATERN+WHITE@2016	0.468	0.389	0.494
RATIONAL_QUADRATIC+WHITE@2018	0.463	0.375	0.493
MATERN+WHITE@2018	0.46	0.368	0.493

Tabela 71: Experimento 4 - Desempenho das funções de escore no CASF-2016 no teste do *Ranking Power*.

E Experimento Nro. 5

E.1 Metodologia Aplicada

Figura 55: Experimento 5 - Metodologia Aplicada.

E.2 Conjuntos de Treinamento e Teste

Tabela 72: Experimento 5 - Conjuntos de Treinamento e Teste.

Conjunto	ID	Tamanho
Trainamento	refined-set18A	2085
Tremamento	refined-set18B	4152
Teste	core-set16	343

E.3 Descritores

Tabela 73:	Experimento	5 -	Descritores.
------------	-------------	-----	--------------

ID	Tamanho
deltavina20	20

E.4 Atributo Alvo

$$score = pK_d(vina) + \Delta pK_d(RF)$$
(19)

E.5 Modelos Preditivos

Método	ID	Treino	Kernel	Parâmetros
Pandom Forest	RANDOM_FOREST@2018A	refined-set18A		$n_{\text{estimators}} = 500$
Kalidolli Polest	RANDOM_FOREST@2018B	refined-set18B		$n_{\text{estimators}} = 500$
	DOT_PRODUCT+WHITE@2018A	refined-set18A	dot-product+white	Padrâo
	EXP_SINE_SQUARED@2018A	refined-set18A	exp-sine-squared	Padrâo
	EXP_SINE_SQUARED+WHITE@2018A	refined-set18A	exp-sine-squared+white	Padrâo
	MATERN@2018A	refined-set18A	matern	Padrâo
	MATERN+WHITE@2018A	refined-set18A	matern+white	Padrâo
	RATIONAL_QUADRATIC@2018A	refined-set18A	rational-quadratic	Padrâo
	RATIONAL_QUADRATIC+WHITE@2018A	refined-set18A	rational-quadratic+white	Padrâo
	RBF@2018A	refined-set18A	rbf	Padrâo
Gaussian Process	RBF+WHITE@2018A	refined-set18A	rbf+white	Padrâo
Gaussian 1 10ccss	DOT_PRODUCT+WHITE@2018B	refined-set18B	dot-product+white	Padrâo
	EXP_SINE_SQUARED@2018B	refined-set18B	exp-sine-squared	Padrâo
	EXP_SINE_SQUARED+WHITE@2018B	refined-set18B	exp-sine-squared+white	Padrâo
	MATERN@2018B	refined-set18B	matern	Padrâo
	MATERN+WHITE@2018B	refined-set18B	matern+white	Padrâo
	RATIONAL_QUADRATIC@2018B	refined-set18B	rational-quadratic	Padrâo
	RATIONAL_QUADRATIC+WHITE@2018B	refined-set18B	rational-quadratic	Padrâo
	RBF@2018B	refined-set18B	rbf	Padrâo
	RBF+WHITE@2018B	refined-set18B	rbf+white	Padrâo

Tabela 74:	Experimente	5 -	Config	iração dos	modelos	preditivos
100010 / I.	LAPOINTOIR	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Connet	muçuo uos	moucios	proutinos

E.6 Resultados

E.6.1 Scoring Power

refined-set18A

		· · ·	/
scoring function	Ν	R	SD
Δ VinaRF20	285	0.816	1.26
RANDOM_FOREST@2018A	285	0.651	1.65
X-Score	285	0.631	1.69
X-ScoreHS	285	0.629	1.69
ΔSAS	285	0.625	1.7
X-ScoreHP	285	0.621	1.7
ASP@GOLD	282	0.617	1.71
ChemPLP@GOLD	281	0.614	1.72
X-ScoreHM	285	0.609	1.73
MATERN_WHITE@2018A	285	0.607	1.73
MATERN@2018A	285	0.607	1.73
RBF_WHITE@2018A	285	0.607	1.73
RBF@2018A	285	0.605	1.73
EXP_SINE_SQUARED_WHITE@2018A	285	0.604	1.73
AutodockVina	285	0.604	1.73
EXP_SINE_SQUARED@2018A	285	0.602	1.74
DrugScore2018	285	0.602	1.74
DrugScoreCSD	285	0.596	1.75
ASE@MOE	285	0.591	1.75
ChemScore@SYBYL	285	0.59	1.76
PLP1@DS	285	0.581	1.77
ChemScore@GOLD	279	0.574	1.78
G-Score@SYBYL	284	0.572	1.79
Alpha-HB@MOE	285	0.569	1.79
RATIONAL_QUADRATIC@2018A	285	0.563	1.8
PLP2@DS	285	0.563	1.8
RATIONAL_QUADRATIC_WHITE@2018A	285	0.56	1.8
Affinity-dG@MOE	285	0.552	1.81
LigScore2@DS	285	0.54	1.83
D-Score@SYBYL	284	0.531	1.84
LUDI2@DS	285	0.526	1.85
GlideScore-SP	258	0.513	1.89
LUDI3@DS	285	0.502	1.88
GBVI/WSA-dG@MOE	271	0.496	1.91
LUDI1@DS	284	0.494	1.88
DOT_PRODUCT_WHITE@2018A	285	0.477	1.91
GlideScore-XP	252	0.467	1.95
Jain@DS	279	0.457	1.89
LigScore1@DS	285	0.425	1.97
PMF@DS	282	0.422	1.97
GoldScore@GOLD	244	0.416	1.99
London-dG@MOE	285	0.405	1.99
PMF@SYBYL	279	0.262	2.09
PMF04@DS	263	0.212	2.11

Tabela 75: Experimento 5 - Desempenho das funções de escore no CASF-2016 no teste do *Scoring Power* (refined-set18A). Adaptado de: SU et al. (2018).

refined-set18B

Tabela 76: Experimento 5 - Desempenho das funções de escore no CASF-2016 no teste do *Scoring Power* (refined-set18B). Adaptado de: SU et al. (2018).

(Tenned Settob): Hauptado de. DO	- Ct u	1. (201	. 0).
scoring function	N	R	SD
Δ VinaRF20	285	0.816	1.26
RANDOM_FOREST@2018B	285	0.685	1.58
X-Score	285	0.631	1.69
X-ScoreHS	285	0.629	1.69
Δ SAS	285	0.625	1.7
X-ScoreHP	285	0.621	1.7
ASP@GOLD	282	0.617	1.71
ChemPLP@GOLD	281	0.614	1.72
MATERN_WHITE@2018B	285	0.609	1.72
MATERN@2018B	285	0.609	1.72
RATIONAL_QUADRATIC@2018B	285	0.609	1.72
X-ScoreHM	285	0.609	1.73
RBF_WHITE@2018B	285	0.608	1.73
RBF@2018B	285	0.607	1.73
EXP_SINE_SQUARED_WHITE@2018B	285	0.604	1.73
AutodockVina	285	0.604	1.73
RATIONAL_QUADRATIC_WHITE@2018B	285	0.603	1.73
EXP_SINE_SQUARED@2018B	285	0.602	1.74
DrugScore2018	285	0.602	1.74
DrugScoreCSD	285	0.596	1.75
ASE@MOE	285	0.591	1.75
ChemScore@SYBYL	285	0.59	1.76
PLP1@DS	285	0.581	1.77
ChemScore@GOLD	279	0.574	1.78
G-Score@SYBYL	284	0.572	1.79
Alpha-HB@MOE	285	0.569	1.79
PLP2@DS	285	0.563	1.8
DOT_PRODUCT_WHITE@2018B	285	0.558	1.8
Affinity-dG@MOE	285	0.552	1.81
LigScore2@DS	285	0.54	1.83
D-Score@SYBYL	284	0.531	1.84
LUDI2@DS	285	0.526	1.85
GlideScore-SP	258	0.513	1.89
LUDI3@DS	285	0.502	1.88
GBVI/WSA-dG@MOE	271	0.496	1.91
LUDI1@DS	284	0.494	1.88
GlideScore-XP	252	0.467	1.95
Jain@DS	279	0.457	1.89
LigScore1@DS	285	0.425	1.97
PMF@DS	282	0.422	1.97
GoldScore@GOLD	244	0.416	1.99
London-dG@MOE	285	0.405	1.99
PMF@SYBYL	279	0.262	2.09
PMF04@DS	263	0.212	2.11

E.6.2 Ranking Power

refined-set18A

Tabela 77: Experimento 5 - Desempenho das funçõe	es de escore no CASF-2016 no teste
do Ranking Power (refined-set18A). Adaptado de:	SU et al. (2018).

scoring_function	SP	tau	PI
Δ VinaRF20	0.75	0.686	0.761
ChemPLP@GOLD	0.633	0.537	0.657
DrugScoreCSD	0.63	0.544	0.663
LUDI2@DS	0.629	0.543	0.657
LUDI1@DS	0.612	0.534	0.64
LigScore2@DS	0.608	0.521	0.62
DrugScore2018	0.607	0.53	0.637
X-Score	0.604	0.529	0.638
Affinity-dG@MOE	0.604	0.519	0.619
X-ScoreHM	0.603	0.522	0.641
LigScore1@DS	0.599	0.523	0.606
ChemScore@SYBYL	0.593	0.53	0.617
London-dG@MOE	0.593	0.526	0.609
G-Score@SYBYL	0.591	0.526	0.609
PLP2@DS	0.589	0.512	0.617
ΔSAS	0.588	0.498	0.612
PLP1@DS	0.582	0.509	0.605
D-Score@SYBYL	0.577	0.516	0.598
X-ScoreHP	0.573	0.508	0.607
ASP@GOLD	0.553	0.474	0.582
X-ScoreHS	0.547	0.469	0.577
RBF_WHITE@2018A	0.54	0.46	0.568
RANDOM_FOREST@2018A	0.54	0.449	0.569
PMF@DS	0.537	0.47	0.559
Alpha-HB@MOE	0.535	0.477	0.558
MATERN_WHITE@2018A	0.535	0.456	0.564
MATERN@2018A	0.535	0.456	0.564
LUDI3@DS	0.532	0.449	0.564
EXP_SINE_SQUARED@2018A	0.53	0.456	0.558
AutodockVina	0.528	0.453	0.557
EXP_SINE_SQUARED_WHITE@2018A	0.528	0.453	0.557
RBF@2018A	0.528	0.453	0.557
ChemScore@GOLD	0.526	0.46	0.558
Jain@DS	0.521	0.448	0.545
RATIONAL_QUADRATIC@2018A	0.493	0.4	0.526
GBVI/WSA-dG@MOE	0.489	0.421	0.504
PMF04@DS	0.481	0.386	0.497
RATIONAL_QUADRATIC_WHITE@2018A	0.463	0.375	0.493
PMF@SYBYL	0.449	0.379	0.478
ASE@MOE	0.439	0.372	0.466
GlideScore-SP	0.419	0.374	0.425
DOT_PRODUCT_WHITE@2018A	0.402	0.323	0.423
GoldScore@GOLD	0.284	0.242	0.283
GlideScore-XP	0.257	0.227	0.255

refined-set18B

Tabela 78: Experimento 5 - Desempenho das funçã	ões de escore no CASF-2016 no teste
do Ranking Power (refined-set18B). Adaptado de:	SU et al. (2018).

scoring function	SP	tau	PI
Δ VinaRF20	0.75	0.686	0.761
ChemPLP@GOLD	0.633	0.537	0.657
DrugScoreCSD	0.63	0.544	0.663
LUDI2@DS	0.629	0.543	0.657
LUDI1@DS	0.612	0.534	0.64
LigScore2@DS	0.608	0.521	0.62
DrugScore2018	0.607	0.53	0.637
X-Score	0.604	0.529	0.638
Affinity-dG@MOE	0.604	0.519	0.619
X-ScoreHM	0.603	0.522	0.641
LigScore1@DS	0.599	0.523	0.606
ChemScore@SYBYL	0.593	0.53	0.617
London-dG@MOE	0.593	0.526	0.609
G-Score@SYBYL	0.591	0.526	0.609
PLP2@DS	0.589	0.512	0.617
ΔSAS	0.588	0.498	0.612
PLP1@DS	0.582	0.509	0.605
D-Score@SYBYL	0.577	0.516	0.598
X-ScoreHP	0.573	0.508	0.607
ASP@GOLD	0.553	0.474	0.582
X-ScoreHS	0.547	0.469	0.577
EXP_SINE_SQUARED@2018B	0.542	0.47	0.574
RANDOM_FOREST@2018B	0.54	0.418	0.574
PMF@DS	0.537	0.47	0.559
Alpha-HB@MOE	0.535	0.477	0.558
RBF_WHITE@2018B	0.535	0.456	0.564
MATERN_WHITE@2018B	0.535	0.456	0.564
RBF@2018B	0.535	0.456	0.564
MATERN@2018B	0.535	0.456	0.564
RATIONAL_QUADRATIC@2018B	0.533	0.442	0.559
LUDI3@DS	0.532	0.449	0.564
AutodockVina	0.528	0.453	0.557
EXP_SINE_SQUARED_WHITE@2018B	0.528	0.453	0.557
ChemScore@GOLD	0.526	0.46	0.558
Jain@DS	0.521	0.448	0.545
RATIONAL_QUADRATIC_WHITE@2018B	0.514	0.425	0.533
GBVI/WSA-dG@MOE	0.489	0.421	0.504
PMF04@DS	0.481	0.386	0.497
PMF@SYBYL	0.449	0.379	0.478
DOT_PRODUCT_WHITE@2018B	0.447	0.34	0.474
ASE@MOE	0.439	0.372	0.466
GlideScore-SP	0.419	0.374	0.425
GoldScore@GOLD	0.284	0.242	0.283
GlideScore-XP	0.257	0.227	0.255

F Experimento Nro. 6

F.1 Metodologia Aplicada

Figura 56: Experimento 6 - Metodologia Aplicada.

F.2 Conjuntos de Treinamento e Teste

Tabela 79: Experimento 6 - Conjuntos de Treinamento e Teste.

Conjunto	ID	Tamanho
Treinamento	refined-set18A	2085
memanento	refined-set18B	4152
Teste	docking-set16	28500

F.3 Descritores

Tabela 80: E	xperimento 6 -	Descritores.
--------------	----------------	--------------

ID	Tamanho
deltavina20	20

F.4 Atributo Alvo

$$score = pK_d(vina) + \Delta pK_d(RF)$$
⁽²⁰⁾

F.5 Modelos Preditivos

Método	ID	Treino	Kernel	Parâmetros
Random Forest	RANDOM_FOREST@2018A	refined-set18A		$n_{\text{estimators}} = 500$
	RANDOM_FOREST@2018B	refined-set18B		$n_{\text{estimators}} = 500$
Gaussian Process	DOT_PRODUCT+WHITE@2018A	refined-set18A	dot-product+white	Padrâo
	EXP_SINE_SQUARED@2018A	refined-set18A	exp-sine-squared	Padrâo
	EXP_SINE_SQUARED+WHITE@2018A	refined-set18A	exp-sine-squared+white	Padrâo
	MATERN@2018A	refined-set18A	matern	Padrâo
	MATERN+WHITE@2018A	refined-set18A	matern+white	Padrâo
	RATIONAL_QUADRATIC@2018A	refined-set18A	rational-quadratic	Padrâo
	RATIONAL_QUADRATIC+WHITE@2018A	refined-set18A	rational-quadratic+white	Padrâo
	RBF@2018A	refined-set18A	rbf	Padrâo
	RBF+WHITE@2018A	refined-set18A	rbf+white	Padrâo
	DOT_PRODUCT+WHITE@2018B	refined-set18B	dot-product+white	Padrâo
	EXP_SINE_SQUARED@2018B	refined-set18B	exp-sine-squared	Padrâo
	EXP_SINE_SQUARED+WHITE@2018B	refined-set18B	exp-sine-squared+white	Padrâo
	MATERN@2018B	refined-set18B	matern	Padrâo
	MATERN+WHITE@2018B	refined-set18B	matern+white	Padrâo
	RATIONAL_QUADRATIC@2018B	refined-set18B	rational-quadratic	Padrâo
	RATIONAL_QUADRATIC+WHITE@2018B	refined-set18B	rational-quadratic	Padrâo
	RBF@2018B	refined-set18B	rbf	Padrâo
	RBF+WHITE@2018B	refined-set18B	rbf+white	Padrâo

Tabela 81.	Experiment	06-	Configu	ração dos	modelos	preditivos
	LAPOINTOIL	00	Conneu	ração uos	moucios	prountinos
F.6 Resultados

F.6.1 Docking Power

refined-set18A

scoring function	TOP1	TOP2	TOP3
AutodockVina	90.2	95.8	97.2
RBF+WHITE@2018A	90.2	95.8	97.2
EXP_SINE_SQUARED+WHITE@2018A	90.2	95.8	97.2
RBF@2018A	90.2	95.8	97.2
MATERN+WHITE@2018A	89.8	95.4	97.2
MATERN@2018A	89.8	95.4	97.2
Δ VinaRF20	89.1	94.4	96.5
GlideScore-SP	87.7	91.9	93.7
DrugScoreCSD	87.4	93.3	95.1
EXP_SINE_SQUARED@2018A	87	95.4	96.8
GBVI/WSA-dG@MOE	87	91.9	93.3
ChemPLP@GOLD	86	93.7	96.1
LigScore2@DS	85.6	93.3	96.5
RANDOM_FOREST@2018A	84.2	91.9	94
GlideScore-XP	83.9	90.2	94.4
RATIONAL_QUADRATIC@2018A	83.5	92.6	94.7
DrugScore2018	83.5	89.5	94
RATIONAL_QUADRATIC+WHITE@2018A	82.8	90.5	93.7
PLP1@DS	82.8	90.5	94
ASP@GOLD	81.1	88.4	93
ChemScore@GOLD	80.4	86	90.9
PLP2@DS	79.3	88.4	92.3
LigScore1@DS	76.8	86	89.5
GoldScore@GOLD	75.1	86.3	90.5
DOT_PRODUCT+WHITE@2018A	73	83.9	89.5
Alpha-HB@MOE	71.6	81.1	85.3
X-ScoreHM	65.3	77.9	83.5
Affinity-dG@MOE	63.5	76.1	83.9
LUDI2@DS	63.5	75.1	80.4
X-Score	63.5	74	80.4
London-dG@MOE	63.2	78.2	83.9
LUDI1@DS	63.2	73.7	81.1
X-ScoreHS	59.6	72.3	78.6
ChemScore@SYBYL	57.9	68.8	77.2
X-ScoreHP	56.1	67.7	75.1
Jain@DS	55.8	67.4	75.8
LUDI3@DS	53	63.2	71.9
ASE@MOE	50.5	60.7	67
PMF@SYBYL	47.7	57.9	65.3
PMF04@DS	46.3	54	59.6
G-Score@SYBYL	44.2	59.6	69.1
PMF@DS	42.8	51.9	58.6
	30.2	44.6	51.6
D-Score@SYBYL	26	40	51.9

Tabela 82: Experimento 6 - Desempenho das funções de escore no CASF-2016 no teste do *Docking Power* (refined-set18A). Adaptado de: SU et al. (2018).

refined-set18B

Tabela 83: Experimento 6 - Desempenho das função	ões de escore no CASF-2016 no teste
do Docking Power (refined-set18B). Adaptado de:	SU et al. (2018).
	TODI TODI TODI

scoring function	TOP1	TOP2	TOP3
AutodockVina	90.2	95.8	97.2
EXP_SINE_SQUARED+WHITE@2018B	90.2	95.8	97.2
RBF+WHITE@2018B	90.2	95.8	97.2
RBF@2018B	90.2	95.8	97.2
MATERN+WHITE@2018B	89.8	95.1	97.2
MATERN@2018B	89.8	95.1	97.2
Δ VinaRF20	89.1	94.4	96.5
GlideScore-SP	87.7	91.9	93.7
DrugScoreCSD	87.4	93.3	95.1
GBVI/WSA-dG@MOE	87	91.9	93.3
ChemPLP@GOLD	86	93.7	96.1
LigScore2@DS	85.6	93.3	96.5
GlideScore-XP	83.9	90.2	94.4
RANDOM_FOREST@2018B	83.9	93	95.1
DrugScore2018	83.5	89.5	94
PLP1@DS	82.8	90.5	94
RATIONAL_QUADRATIC@2018B	82.5	91.6	94
RATIONAL_QUADRATIC+WHITE@2018B	82.1	91.2	93
EXP_SINE_SQUARED@2018B	81.8	93.7	96.5
ASP@GOLD	81.1	88.4	93
ChemScore@GOLD	80.4	86	90.9
PLP2@DS	79.3	88.4	92.3
LigScore1@DS	76.8	86	89.5
GoldScore@GOLD	75.1	86.3	90.5
Alpha-HB@MOE	71.6	81.1	85.3
DOT_PRODUCT+WHITE@2018B	67.4	76.5	82.8
X-ScoreHM	65.3	77.9	83.5
Affinity-dG@MOE	63.5	76.1	83.9
LUDI2@DS	63.5	75.1	80.4
X-Score	63.5	74	80.4
London-dG@MOE	63.2	78.2	83.9
LUDI1@DS	63.2	73.7	81.1
X-ScoreHS	59.6	72.3	78.6
ChemScore@SYBYL	57.9	68.8	77.2
X-ScoreHP	56.1	67.7	75.1
Jain@DS	55.8	67.4	75.8
LUDI3@DS	53	63.2	71.9
ASE@MOE	50.5	60.7	67
PMF@SYBYL	47.7	57.9	65.3
PMF04@DS	46.3	54	59.6
G-Score@SYBYL	44.2	59.6	69.1
PMF@DS	42.8	51.9	58.6
ΔSAS	30.2	44.6	51.6
D-Score@SYBYL	26	40	51.9

G Experimento Nro. 7

G.1 Metodologia Aplicada

Figura 57: Experimento 7 - Metodologia Aplicada.

G.2 Conjuntos de Treinamento e Teste

Tabela 84: Experimento 7 - Conjuntos de Treinamento e Teste.

Conjunto	ID	Tamanho
	refined-set18A	2085
	refined-set18B	4152
Treinamento	weak-set18	458
	csar-nrc-hiq-set	343
	csar-decoys-all-set11	3773
	core-set16	285
Teste	docking-set16	28500
	screening-set16	1624500

G.3 Descritores

Tabela 85: Ex	xperimento 7 -	Descritores.
---------------	----------------	--------------

	ID	Tamanho
ſ	deltavina20	20

G.4 Atributo Alvo

$$score = pK_d(vina) + \Delta pK_d(RF)$$
 (21)

G.5 Modelos Preditivos

Tabela 86:	Experimento	7 -	Configuração	o dos mode	los preditivos.

Método	ID	Treino	Parâmetros
	RS	refined-set18A	$n_{\text{estimators}} = 500$
	PS+CS	refined-set18A	n estimators - 500
	K5TC5	+csar-nrc-hiq-set	
Random Forest	DC DC	refined-set18A	n estimators – 500
	K3+D3	+csar-decoys-all-set11	Π_{c} estimators – 500
	PS+WS	refined-set18A	n estimators - 500
	KOT W S	+weak-set18	Π_{2} estimators – 500
		refined-set18A	
	RS+WS+CS+DS	+weak-set18	n astimators - 500
		+csar-nrc-hiq-set	$11_{\text{csumators}} = 500$
		+csar-decoys-all-set11	
	FS	refined-set18B	$n_{\text{-}}estimators = 500$
		refined-set18B	
	EC WC CC DC	+weak-set18	n astimators - 500
	1.24 M 24C 24D 2	+csar-nrc-hiq-set	
		+csar-decoys-all-set11	

G.6 Resultados

G.6.1 Scoring Power

Tabela 87: Experimento 7 - Desempenho das funções de escore no CASF-2016 no teste do *Scoring Power*.

scoring function	N	R	SD
FS+WS+CS+DS	284	0.7077	1.531
FS	285	0.6914	1.571
RS+WS	285	0.6723	1.608
RS+DS	285	0.6679	1.618
RS	285	0.6529	1.646
RS+WS+CS+DS	280	0.6493	1.654
RS+CS	275	0.6047	1.711

Figura 58: Experimento 7 - Desempenho das funções de escore no CASF-2016 no teste do *Scoring Power*.

Figura 59: Experimento 7 - Comparação com outras funcões de escore do CASF-2016 no teste do Scoring Power. Adaptado de: SU et al. (2018).

G.6.2 Ranking Power

scoring function	SP	tau	PI
RS+WS	0.5776	0.4761	0.6004
RS+DS	0.5744	0.4803	0.5954
FS+WS+CS+DS	0.5668	0.4756	0.5962
RS	0.5625	0.4637	0.5866
FS	0.5472	0.4335	0.5765
RS+WS+CS+DS	0.5171	0.4458	0.5404
RS+CS	0.4748	0.3967	0.4945

Tabela 88: Experimento 7 - Desempenho das funções de escore no CASF-2016 no teste do *Ranking Power*.

Figura 60: Experimento 7 - Desempenho das funções de escore no CASF-2016 no teste do *Ranking Power*.

Ranking Power

Figura 61: Experimento 7 - Comparação com outras funcões de escore do CASF-2016 no teste do Ranking Power. Adaptado de: SU et al. (2018).

G.6.3 Docking Power

scoring function	TOP1	TOP2	TOP3
RS+DS	87.73	94.62	97.17
RS+WS+CS+DS	86.48	93.75	95.29
FS+WS+CS+DS	86.11	94.73	96.16
RS	84.9	92.98	95.02
RS+WS	82.65	91.58	93.85
FS	82.6	92.87	95.22
RS+CS	81.49	88.58	91.53

Tabela 89: Experimento 7 - Desempenho das funções de escore no CASF-2016 no teste do *Docking Power*.

Figura 62: Experimento 7 - Desempenho das funções de escore no CASF-2016 no teste do *Docking Power*.

Figura 63: Experimento 7 - Comparação com outras funcões de escore do CASF-2016 no teste do *Docking Power*. Adaptado de: SU et al. (2018).

Docking Power (without native pose)

scoring function	TOP1	TOP2	TOP3
RS+DS	83.22	90.21	93.37
FS+WS+CS+DS	82.51	90.76	93.56
RS+WS+CS+DS	82.07	89.4	92.23
RS	79.8	89.3	91.59
RS+WS	78.84	88.35	91.58
FS	78.48	89.05	91.63
RS+CS	77.5	85.63	89.16

Tabela 90: Experimento 7 - Desempenho das funções de escore no CASF-2016 no teste do *Docking Power (without native pose)*.

Figura 64: Experimento 7 - Desempenho das funções de escore no CASF-2016 no teste do *Docking Power (without native pose)*.

Figura 65: Experimento 7 - Comparação com outras funcões de escore do CASF-2016 no teste do *Docking Power (without native pose)*. Adaptado de: SU et al. (2018).

G.6.4 Forward Screening Power

scoring power	TOP1	TOP5	TOP10
RS+WS	32.45	45.8	54.9
FS+WS+CS+DS	31.23	46.15	55.6
RS+DS	29.81	42.83	55.77
RS	29.47	42.48	50.17
RS+WS+CS+DS	28.78	39.66	53.67
RS+CS	27.73	42.46	50.17
FS	26.67	44.91	54.74

Tabela 91: Experimento 7 - Desempenho das funções de escore no CASF-2016 no teste do *Forward Screening Power*.

Figura 66: Experimento 7 - Desempenho das funções de escore no CASF-2016 no teste do *Forward Screening Power*.

Forward Screening Power

Figura 67: Experimento 7 - Comparação com outras funcões de escore do CASF-2016 no teste do *Forward Screening Power*. Adaptado de: SU et al. (2018).

G.6.5 Reverse Screening Power

scoring function	TOP1	TOP5	TOP10
RS+WS+CS+DS	12.53	20.35	30.45
FS+WS+CS+DS	12.51	23.5	32.1
RS+DS	11.36	22.54	30.64
RS+WS	10.1	18.69	31.33
RS+CS	9.3	20.26	29.57
RS	8.46	18.22	29.43
FS	8.28	15.54	26.12

Tabela 92: Experimento 7 - Desempenho das funções de escore no CASF-2016 no teste do *Reverse Screening Power*.

Figura 68: Experimento 7 - Desempenho das funções de escore no CASF-2016 no teste do *Reverse Screening Power*.

Reverse Screening Power

Figura 69: Experimento 7 - Comparação com outras funcões de escore do CASF-2016 no teste do *Reverse Screening Power*. Adaptado de: SU et al. (2018).

H Experimento Nro. 8

H.1 Metodologia Aplicada

Figura 70: Experimento 8 - Metodologia Aplicada.

H.2 Conjuntos de Treinamento e Teste

Conjunto	ID	Tamanho
	refined-set18A	2085
	refined-set18B	4152
Treinamento	weak-set18	458
	csar-nrc-hiq-set	343
	csar-decoys-all-set11	3773
	core-set16	285
Teste	docking-set16	28500
	screening-set16	1624500

H.3 Descritores

Tabela 94: Experimento 8	- Descritores.
--------------------------	----------------

]	ID	Tamanho
(deltavina20	20

H.4 Atributo Alvo

$$score = -LogKd$$
 (22)

H.5 Modelo Preditivo

Tabela 95:	Experimento	8 - Configur	acão dos r	nodelos pi	editivos.

Método	ID	Treino	Parâmetros
	RS	refined-set18A	$n_{\text{estimators}} = 500$
	PS+CS	refined-set18A	$n_{estimators} = 500$
	K5TC5	+csar-nrc-hiq-set	
Random Forest	PS+DS	refined-set18A	n estimators - 500
	Котро	+csar-decoys-all-set11	Π_{c} sumators – 500
	PS+WS	refined-set18A	n estimators - 500
	KOT W S	+weak-set18	
		refined-set18A	
	RS+WS+CS+DS	+weak-set18	n astimators - 500
		+csar-nrc-hiq-set	$11_{\text{CSUIMATOLS}} = 500$
		+csar-decoys-all-set11	
	FS	refined-set18B	$n_{\text{estimators}} = 500$
		refined-set18B	
	EC WC CC DC	+weak-set18	n estimators – 500
	1.24 1.2403403	+csar-nrc-hiq-set	1 ± 0.01
		+csar-decoys-all-set11	

H.6 Resultados

H.6.1 Scoring Power

Tabela 96: Experimento 8 - Desempenho das funções de escore no CASF-2016 no teste do *Scoring Power*.

scoring function	N	R	SD
FS	285	0.6959	1.561
FS+WS+CS+DS	285	0.6603	1.633
RS+WS	285	0.6492	1.654
RS	285	0.6225	1.701
RS+CS	285	0.5995	1.742
RS+WS+CS+DS	284	0.592	1.75
RS+DS	283	0.5621	1.792

Figura 71: Experimento 8 - Desempenho das funções de escore no CASF-2016 no teste do *Scoring Power*.

Figura 72: Experimento 8 - Comparação com outras funcões de escore do CASF-2016 no teste do Scoring Power. Adaptado de: SU et al. (2018).

H.6.2 Ranking Power

scoring function	SP	tau	PI
FS+WS+CS+DS	0.5406	0.4608	0.5681
RS+WS	0.5359	0.4537	0.5627
FS	0.5355	0.4576	0.5581
RS	0.4875	0.4127	0.5157
RS+CS	0.4851	0.4077	0.5085
RS+WS+CS+DS	0.4752	0.4014	0.4967
RS+DS	0.4429	0.376	0.4643

Tabela 97: Experimento 8 - Desempenho das funções de escore no CASF-2016 no teste do *Ranking Power*.

Figura 73: Experimento 8 - Desempenho das funções de escore no CASF-2016 no teste do *Ranking Power*.

Ranking Power

Figura 74: Experimento 8 - Comparação com outras funcões de escore do CASF-2016 no teste do Ranking Power. Adaptado de: SU et al. (2018).

H.6.3 Docking Power

scoring function	TOP1	TOP2	TOP3
RS+DS	35.42	49.76	58.48
RS+WS+CS+DS	33.84	47.65	57.11
FS+WS+CS+DS	31.46	47.1	57.18
RS+WS	30.6	42.35	51.15
FS	26.82	38.84	46.88
RS	25.91	40.32	48.67
RS+CS	21.73	33.67	42.37

Tabela 98: Experimento 8 - Desempenho das funções de escore no CASF-2016 no teste do *Docking Power*.

Figura 75: Experimento 8 - Desempenho das funções de escore no CASF-2016 no teste do *Docking Power*.

Figura 76: Experimento 8 - Comparação com outras funcões de escore do CASF-2016 no teste do *Docking Power*. Adaptado de: SU et al. (2018).

Docking Power (without native pose)

scoring function	TOP1	TOP2	TOP3
RS+DS	34.49	48.99	58.07
RS+WS+CS+DS	33.22	47.2	56.66
FS+WS+CS+DS	30.92	46.71	56.97
RS+WS	30.29	41.98	50.81
FS	26.42	38.7	46.64
RS	25.48	39.78	48.27
RS+CS	21.24	32.83	41.38

Tabela 99: Experimento 8 - Desempenho das funções de escore no CASF-2016 no teste do *Docking Power (without native pose)*.

Figura 77: Experimento 8 - Desempenho das funções de escore no CASF-2016 no teste do *Docking Power (without native pose)*.

Docking Power (binding pose is not included)

Figura 78: Experimento 8 - Comparação com outras funcões de escore do CASF-2016 no teste do Docking Power (without native pose). Adaptado de: SU et al. (2018).

H.6.4 Forward Screening Power

scoring function	TOP1	TOP5	TOP10
FS+WS+CS+DS	4.94	17.35	34.36
RS+WS	4.22	18.23	30
RS+WS+CS+DS	3.33	13.85	25.44
FS	3.17	17.53	37.38
RS+DS	3.16	18.06	26.84
RS	2.82	19.11	30
RS+CS	1.44	11.05	25.62

Tabela 100: Experimento 8 - Desempenho das funções de escore no CASF-2016 no teste do *Forward Screening Power*.

Figura 79: Experimento 8 - Desempenho das funções de escore no CASF-2016 no teste do *Forward Screening Power*.

Forward Screening Power

Figura 80: Experimento 8 - Comparação com outras funcões de escore do CASF-2016 no teste do *Forward Screening Power*. Adaptado de: SU et al. (2018).

H.6.5 Reverse Screening Power

scoring function	TOP1	TOP5	TOP10
RS+DS	4.34	10.03	19.02
RS+WS+CS+DS	3.01	8.26	16.81
FS	2.6	6.56	12.7
FS+WS+CS+DS	2.51	8.01	16.73
RS+WS	2.4	5.62	12.29
RS	1.46	5.11	10.21
RS+CS	0.94	3.95	9.97

Tabela 101: Experimento 8 - Desempenho das funções de escore no CASF-2016 no teste do *Reverse Screening Power*.

Figura 81: Experimento 8 - Desempenho das funções de escore no CASF-2016 no teste do *Reverse Screening Power*.

Adaptado de: SU et al. (2018).

Reverse Screening Power

Figura 82: Experimento 8 - Comparação com outras funcões de escore do CASF-2016 no teste do *Reverse Screening Power*. Adaptado de: SU et al. (2018).

I Experimento Nro. 9

I.1 Metodologia Aplicada

Figura 83: Experimento 9 - Metodologia Aplicada.

I.2 Conjuntos de Treinamento e Teste

Tabela 102: Experimento 9 - Conjuntos de Treinamento e Teste.

Conjunto	ID	Tamanho
	refined-set18A	2085
	refined-set18B	4152
Treinamento	weak-set18	458
	csar-nrc-hiq-set	343
	csar-decoys-all-set11	3773
	core-set16	285
Teste	docking-set16	28500
	screening-set16	1624500

I.3 Descritores

Tabela 103:	Experimento 9 - Descrito	res.

ID		Tamanho
delta	vina20	20

I.4 Atributo Alvo

$$score = pK_d(vina) + \Delta pK_d(RF)$$
 (23)

I.5 Modelos Preditivos

Tabela 104: Experimento 9 - Configuração dos modelos preditivos.

Método	ID	Treino	Kernels	Parâmetros
	RS	refined-set18A	Index - [DDE	Padrão
	RS+CS	refined-set18A	MATERN	Padrão
		+csar-nrc-hiq-set	RATIONAL OUADRATIC	1 uuruo
Gaussian Process	RS+DS	refined-set18A	RBE+WHITE	Padrão
	K3+D3	+csar-decoys-all-set11	MATERN+WHITE	I auraŭ
	RS+WS	refined-set18A	MATERN+WHITE,	Padrão
		+weak-set18	KAHONAL QUADRATIC+WHITE]	
		refined-set18A		
	RS+WS+CS+DS	+weak-set18		Padrão
		+csar-nrc-hiq-set		
		+csar-decoys-all-set11		
	FS	refined-set18B		Padrão
		refined-set18B		
	FEIWEICEIDE	+weak-set18		Dodrão
	rs+ws+C3+D3	+csar-nrc-hiq-set		r aui a0
		+csar-decoys-all-set11		

I.6 Resultados

I.6.1 Scoring Power

scoring function	kernel	N	R	SD	90%_confidence_interval
FS	MATERN+WHITE	285	0.658	1.64	0.602~0.705
FS	RBF+WHITE	285	0.656	1.64	0.600~0.703
RS+DS	RATIONAL QUADRATIC	285	0.622	1.7	0.558~0.677
RS	MATERN	285	0.61	1.72	0.546~0.667
RS+WS	MATERN	285	0.61	1.72	0.546~0.665
RS+DS	MATERN	285	0.609	1.72	0.543~0.664
FS	RATIONAL QUADRATIC	285	0.609	1.72	0.549~0.663
RS+DS	RBF	285	0.608	1.73	0.543~0.664
RS	RBF	285	0.605	1.73	0.538~0.659
RS+WS	RBF	285	0.605	1.73	0.540~0.660
FS	RBF	285	0.604	1.73	0.539~0.660
RS+WS	RATIONAL QUADRATIC	285	0.604	1.73	0.540~0.661
FS	MATERN	285	0.603	1.73	0.537~0.657
FS	RATIONAL QUADRATIC+WHITE	285	0.603	1.73	0.541~0.660
RS+WS	RATIONAL QUADRATIC+WHITE	285	0.6	1.74	0.533~0.658
RS+DS	RATIONAL QUADRATIC+WHITE	285	0.595	1.75	0.523~0.656
RS+DS	MATERN+WHITE	285	0.594	1.75	0.524~0.653
RS+WS	MATERN+WHITE	285	0.592	1.75	0.524~0.650
RS+WS	RBF+WHITE	285	0.585	1.76	0.515~0.643
RS+DS	RBF+WHITE	285	0.584	1.76	0.511~0.647
RS	RATIONAL QUADRATIC	285	0.563	1.8	0.494~0.624
RS	RATIONAL QUADRATIC+WHITE	285	0.56	1.8	0.488~0.620
RS	MATERN+WHITE	285	0.55	1.82	0.477~0.613
RS	RBF+WHITE	285	0.549	1.82	0.478~0.610
FS+WS+CS+DS	RBF	281	0.43	1.96	0.341~0.510
FS+WS+CS+DS	RATIONAL QUADRATIC	282	0.391	1.99	0.293~0.482
RS+WS+CS+DS	RBF	275	0.383	1.99	0.285~0.471
FS+WS+CS+DS	RATIONAL QUADRATIC+WHITE	282	0.378	2	0.277~0.467
FS+WS+CS+DS	MATERN	280	0.376	1.99	0.280~0.464
FS+WS+CS+DS	MATERN+WHITE	280	0.369	2	0.271~0.456
RS+WS+CS+DS	MATERN+WHITE	276	0.337	2.03	0.246~0.424
RS+WS+CS+DS	MATERN	275	0.329	2.03	0.234~0.415
FS+WS+CS+DS	RBF+WHITE	275	0.317	2.02	0.217~0.400
RS+WS+CS+DS	RATIONAL QUADRATIC	273	0.313	2.03	0.216~0.401
RS+WS+CS+DS	RATIONAL QUADRATIC+WHITE	272	0.293	2.04	0.196~0.382
RS+WS+CS+DS	RBF+WHITE	265	0.284	2.04	0.188~0.374
RS+CS	RBF+WHITE	261	0.203	2.08	0.090~0.305
RS+CS	MATERN	257	0.086	2.1	-0.042~0.203
RS+CS	MATERN+WHITE	257	0.085	2.1	-0.037~0.199
RS+CS	RATIONAL QUADRATIC	256	0.085	2.09	-0.038~0.196
RS+CS	RATIONAL QUADRATIC+WHITE	256	0.059	2.09	-0.065~0.174
RS+CS	RBF	256	0.01	2.09	-0.109~0.122

Tabela 105: Experimento 9 - Desempenho das funções de escore no CASF-2016 no teste do *Scoring Power*.

scoring_function SD 90%_confidence_interval N R Δ VinaRF20 285 0.816 1.26 0.772~0.848 **GP_MATERN+WHITE_FS** 285 0.602~0.705 0.658 1.64 **GP_RBF+WHITE_FS** 0.600~0.703 285 0.656 1.64 X-Score 285 0.631 1.69 0.571~0.682 X-ScoreHS 285 0.629 1.69 0.568~0.679 ΔSAS 1.7 0.568~0.675 285 0.625 GP_RATIONAL_QUADRATIC_RS+DS 285 0.622 1.7 0.558~0.677 X-ScoreHP 285 0.621 1.7 0.560~0.675 ASP@GOLD 282 0.617 1.71 0.549~0.674 ChemPLP@GOLD 281 0.614 1.72 0.543~0.671 **GP_MATERN_RS** 285 0.61 1.72 0.546~0.667 285 1.73 0.545~0.662 X-ScoreHM 0.609 GP_RBF_RS+DS 285 0.608 1.73 0.543~0.664 AutodockVina 285 0.604 1.73 0.539~0.659 GP_RATIONAL_QUADRATIC+WHITE_FS 285 0.603 1.73 0.541~0.660 DrugScore2018 285 0.602 1.74 0.542~0.655 285 DrugScoreCSD 0.596 1.75 0.533~0.649 ASE@MOE 285 0.591 1.75 0.524~0.646 ChemScore@SYBYL 285 0.59 1.76 0.513~0.651 PLP1@DS 285 0.581 1.77 0.513~0.639 ChemScore@GOLD 279 0.574 1.78 0.501~0.634 0.572 G-Score@SYBYL 284 1.79 $0.504 {\sim} 0.634$ Alpha-HB@MOE 285 0.569 1.79 0.497~0.628 PLP2@DS 285 0.563 1.8 0.495~0.624 Affinity-dG@MOE 285 0.552 1.81 0.478~0.611 LigScore2@DS 285 0.54 1.83 0.473~0.600 D-Score@SYBYL 284 0.531 0.460~0.594 1.84 LUDI2@DS 285 0.526 1.85 0.454~0.587 WS GlideScore-SP 258 0.513 1.89 0.434~0.580 0.502 LUDI3@DS 285 1.88 0.432~0.563 GBVI/WSA-dG@MOE 271 0.496 1.91 0.418~0.563 0.422~0.559 LUDI1@DS 284 0.494 1.88 GlideScore-XP 252 0.467 1.95 0.376~0.545 Jain@DS 279 0.457 1.89 0.381~0.527 LigScore1@DS 285 0.425 1.97 0.344~0.496 PMF@DS 0.422 1.97 0.335~0.502 282 GoldScore@GOLD 244 0.416 1.99 0.319~0.503 London-dG@MOE 285 0.405 1.99 0.326~0.477 PMF@SYBYL 279 0.262 2.09 0.168~0.345 PMF04@DS 0.212 263 2.11 0.106~0.306

Tabela 106: Experimento 9 - Comparação com outras funcões de escore do CASF-2016 no teste do *Scoring Power*. Adaptado de: SU et al. (2018).

I.6.2 Ranking Power

scoring function	kernel	SP	tau	PI	90%_confidence_interval
FS	RBF+WHITE	0.614	0.519	0.642	0.537~0.677
FS	MATERN+WHITE	0.604	0.509	0.626	0.525~0.670
RS+DS	MATERN	0.558	0.477	0.58	0.460~0.637
RS+DS	RBF	0.547	0.467	0.574	0.453~0.628
RS+WS	MATERN	0.537	0.456	0.566	0.444~0.612
RS	MATERN	0.533	0.453	0.562	0.439~0.611
FS	RATIONAL QUADRATIC	0.533	0.442	0.559	0.447~0.611
RS	RBF	0.528	0.453	0.557	0.432~0.609
FS	RBF	0.528	0.453	0.557	0.430~0.609
RS+WS	RBF	0.528	0.453	0.557	0.433~0.611
FS	MATERN	0.523	0.439	0.545	0.430~0.598
FS	RATIONAL QUADRATIC+WHITE	0.514	0.425	0.533	0.426~0.591
RS+DS	RATIONAL QUADRATIC	0.507	0.407	0.538	0.404~0.584
RS+WS	RATIONAL QUADRATIC	0.5	0.393	0.534	0.396~0.581
RS	RATIONAL QUADRATIC	0.493	0.4	0.526	0.389~0.577
RS+WS	RBF+WHITE	0.484	0.4	0.498	0.377~0.572
RS	RBF+WHITE	0.484	0.396	0.517	0.378~0.570
RS+WS	RATIONAL QUADRATIC+WHITE	0.482	0.386	0.512	0.373~0.565
RS	RATIONAL QUADRATIC+WHITE	0.463	0.375	0.493	0.356~0.548
RS+WS	MATERN+WHITE	0.463	0.372	0.485	0.363~0.547
RS	MATERN+WHITE	0.46	0.368	0.493	0.347~0.553
RS+DS	RBF+WHITE	0.46	0.365	0.478	0.360~0.540
RS+DS	RATIONAL QUADRATIC+WHITE	0.451	0.365	0.477	0.349~0.533
RS+DS	MATERN+WHITE	0.44	0.351	0.469	0.339~0.523
FS+WS+CS+DS	RBF+WHITE	0.335	0.27	0.349	0.212~0.446
FS+WS+CS+DS	MATERN+WHITE	0.321	0.274	0.326	0.209~0.412
FS+WS+CS+DS	RATIONAL QUADRATIC	0.319	0.277	0.327	0.219~0.409
FS+WS+CS+DS	MATERN	0.319	0.263	0.325	0.212~0.414
FS+WS+CS+DS	RATIONAL QUADRATIC+WHITE	0.309	0.256	0.312	0.211~0.404
FS+WS+CS+DS	RBF	0.302	0.26	0.308	0.196~0.398
RS+WS+CS+DS	RBF	0.263	0.214	0.276	0.147~0.367
RS+WS+CS+DS	MATERN	0.258	0.225	0.257	0.153~0.354
RS+WS+CS+DS	MATERN+WHITE	0.251	0.218	0.248	0.144~0.349
RS+WS+CS+DS	RATIONAL QUADRATIC	0.242	0.218	0.244	0.133~0.342
RS+WS+CS+DS	RBF+WHITE	0.233	0.207	0.225	0.112~0.335
RS+WS+CS+DS	RATIONAL QUADRATIC+WHITE	0.223	0.196	0.222	0.102~0.326
RS+CS	MATERN	0.158	0.147	0.159	0.049~0.265
RS+CS	RBF	0.158	0.137	0.167	0.051~0.258
RS+CS	MATERN+WHITE	0.149	0.14	0.149	0.039~0.263
RS+CS	RBF+WHITE	0.142	0.123	0.148	0.016~0.263
RS+CS	RATIONAL QUADRATIC	0.119	0.105	0.123	-0.011~0.229
RS+CS	RATIONAL QUADRATIC+WHITE	0.112	0.095	0.12	-0.009~0.223

Tabela 107: Experimento 9 - Desempenho das funções de escore no CASF-2016 no teste do *Ranking Power*.

Tabela 108: Experimento 9 - Comparação com outras funcões de escore do CASF-2016 no teste do *Ranking Power*. Adaptado de: SU et al. (2018).

scoring function	SP	tau	PI	90%_confidence_interval
Δ VinaRF20	0.75	0.686	0.761	0.668~0.811
ChemPLP@GOLD	0.633	0.537	0.657	0.533~0.704
DrugScoreCSD	0.63	0.544	0.663	0.533~0.700
LUDI2@DS	0.629	0.543	0.657	0.532~0.700
GP_RBF+WHITE_FS	0.614	0.519	0.642	0.537~0.677
LUDI1@DS	0.612	0.534	0.64	0.512~0.690
LigScore2@DS	0.608	0.521	0.62	0.521~0.683
DrugScore2018	0.607	0.53	0.637	0.497~0.690
GP_MATERN+WHITE_FS	0.604	0.509	0.626	0.525~0.670
Affinity-dG@MOE	0.604	0.519	0.619	0.509~0.675
X-Score	0.604	0.529	0.638	0.503~0.681
X-ScoreHM	0.603	0.522	0.641	0.500~0.680
LigScore1@DS	0.599	0.523	0.606	0.495~0.679
ChemScore@SYBYL	0.593	0.53	0.617	0.502~0.670
London-dG@MOE	0.593	0.526	0.609	0.491~0.674
G-Score@SYBYL	0.591	0.526	0.609	0.484~0.674
PLP2@DS	0.589	0.512	0.617	0.470~0.674
ΔSAS	0.588	0.498	0.612	0.483~0.668
PLP1@DS	0.582	0.509	0.605	0.467~0.665
D-Score@SYBYL	0.577	0.516	0.598	0.470~0.661
X-ScoreHP	0.573	0.508	0.607	0.476~0.652
GP_MATERN_RS+DS	0.558	0.477	0.58	0.460~0.637
ASP@GOLD	0.553	0.474	0.582	0.453~0.635
GP_RBF_RS+DS	0.547	0.467	0.574	0.453~0.628
X-ScoreHS	0.547	0.469	0.577	0.447~0.627
PMF@DS	0.537	0.47	0.559	0.432~0.621
Alpha-HB@MOE	0.535	0.477	0.558	0.407~0.637
GP_RATIONAL_QUADRATIC_FS	0.533	0.442	0.559	0.447~0.611
LUDI3@DS	0.532	0.449	0.564	0.430~0.614
AutodockVina	0.528	0.453	0.557	0.432~0.609
ChemScore@GOLD	0.526	0.46	0.558	0.423~0.605
Jain@DS	0.521	0.448	0.545	0.405~0.612
GP_RATIONAL_QUADRATIC+WHITE_FS	0.514	0.425	0.533	0.426~0.591
GBVI/WSA-dG@MOE	0.489	0.421	0.504	0.381~0.577
PMF04@DS	0.481	0.386	0.497	0.381~0.567
PMF@SYBYL	0.449	0.379	0.478	0.337~0.540
ASE@MOE	0.439	0.372	0.466	0.312~0.546
GlideScore-SP	0.419	0.374	0.425	0.300~0.519
GoldScore@GOLD	0.284	0.242	0.283	0.167~0.391
GlideScore-XP	0.257	0.227	0.255	0.141~0.364
I.6.3 Docking Power

scoring function	kernel	TOP1	TOP2	TOP3	90%_confidence_interval
RS	RBF	90.2	95.8	97.2	86.667~92.632
FS	RBF	90.2	95.8	97.2	86.316~92.632
RS+WS	RBF	90.2	95.8	97.2	86.316~92.281
RS+DS	RBF	90.2	95.8	97.2	86.667~92.632
RS+DS	MATERN	90.2	95.8	97.2	86.667~92.281
RS	MATERN	89.8	95.1	97.5	86.316~92.281
RS+WS	MATERN	89.8	95.1	97.5	86.316~92.281
RS+DS	RATIONAL_QUADRATIC	87.4	96.1	96.5	83.509~90.175
FS	MATERN	85.3	92.6	95.1	81.053~88.070
RS+WS	RATIONAL_QUADRATIC	84.9	92.6	95.1	80.702~87.719
RS+WS	RATIONAL_QUADRATIC+WHITE	84.2	91.9	94.7	80.000~87.018
RS	RBF+WHITE	84.2	91.2	94.4	80.000~87.368
RS	RATIONAL_QUADRATIC	83.5	92.6	94.7	79.298~86.667
RS	RATIONAL_QUADRATIC+WHITE	82.8	90.5	93.7	78.596~85.965
FS	RATIONAL_QUADRATIC	82.5	91.6	94	77.895~85.614
FS	RATIONAL_QUADRATIC+WHITE	82.1	91.2	93	77.895~85.263
RS+WS	RBF+WHITE	82.1	89.5	92.3	77.895~85.263
RS	MATERN+WHITE	81.8	89.1	93	77.544~84.912
FS	MATERN+WHITE	81.4	91.6	96.1	76.842~84.561
RS+WS	MATERN+WHITE	81.4	91.2	93.3	77.193~84.561
FS	RBF+WHITE	80.7	90.9	93.7	76.140~83.860
RS+DS	MATERN+WHITE	77.9	89.5	94.7	73.333~81.404
RS+DS	RATIONAL_QUADRATIC+WHITE	77.5	89.8	94	72.982~81.053
RS+DS	RBF+WHITE	77.2	86.7	92.6	72.632~80.702
FS+WS+CS+DS	MATERN+WHITE	59.3	69.1	76.1	54.035~63.509
FS+WS+CS+DS	RBF+WHITE	57.9	71.6	77.5	52.632~62.456
FS+WS+CS+DS	MATERN	56.8	68.4	75.8	51.228~61.053
FS+WS+CS+DS	RATIONAL_QUADRATIC	54.7	69.8	77.5	49.474~59.298
FS+WS+CS+DS	RATIONAL_QUADRATIC+WHITE	54.4	68.8	75.4	49.123~58.947
FS+WS+CS+DS	RBF	53	68.8	75.8	47.719~57.544
RS+WS+CS+DS	RBF+WHITE	51.9	62.5	71.6	46.667~56.491
RS+WS+CS+DS	RBF	51.6	64.6	74	46.316~56.140
RS+CS	RBF+WHITE	51.6	60.4	69.1	46.316~56.140
RS+WS+CS+DS	MATERN	51.2	65.6	72.6	45.965~55.789
RS+WS+CS+DS	MATERN+WHITE	50.2	64.6	71.6	44.912~54.737
RS+WS+CS+DS	RATIONAL_QUADRATIC	49.8	63.2	72.3	44.561~54.386
RS+WS+CS+DS	RATIONAL_QUADRATIC+WHITE	49.8	62.8	72.6	44.561~54.386
RS+CS	MATERN+WHITE	47	60	68.4	42.105~51.579
RS+CS	MATERN	45.3	61.1	70.2	40.351~49.825
RS+CS	RATIONAL_QUADRATIC+WHITE	43.9	53	64.6	38.947~48.421
RS+CS	RATIONAL_QUADRATIC	40.7	55.1	64.6	35.789~45.263
RS+CS	RBF	35.8	48.1	56.1	30.877~40.351

Tabela 109: Experimento 9 - Desempenho das funções de escore no CASF-2016 no teste do *Docking Power*.

Tabela 110: Experimento 9 - Comparação com outras funcões de escore do CASF-2016 no teste do *Docking Power*. Adaptado de: SU et al. (2018).

scoring function	TOP1	TOP2	TOP3	90%_confidence_interval
AutodockVina	90.2	95.8	97.2	86.7%~92.6%
GP_RBF_RS	90.2	95.8	97.2	86.7%~92.6%
GP_MATERN_RS+DS	90.2	95.8	97.2	86.7%~92.3%
Δ VinaRF20	89.1	94.4	96.5	85.6%~91.6%
GlideScore-SP	87.7	91.9	93.7	83.5%~89.8%
GP_RATIONAL_QUADRATIC_RS+DS	87.4	96.1	96.5	83.5%~90.2%
DrugScoreCSD	87.4	93.3	95.1	83.2%~90.2%
GBVI/WSA-dG@MOE	87	91.9	93.3	83.2%~89.5%
ChemPLP@GOLD	86	93.7	96.1	81.8%~88.8%
LigScore2@DS	85.6	93.3	96.5	81.4%~88.4%
GP_RATIONAL_QUADRATIC+WHITE_RS+WS	84.2	91.9	94.7	80.0%~87.0%
GP_RBF+WHITE_RS	84.2	91.2	94.4	80.0%~87.4%
GlideScore-XP	83.9	90.2	94.4	79.3%~86.7%
DrugScore2018	83.5	89.5	94	79.3%~86.7%
PLP1@DS	82.8	90.5	94	78.6%~86.0%
GP_MATERN+WHITE_RS	81.8	89.1	93	77.5%~84.9%
ASP@GOLD	81.1	88.4	93	76.5%~84.2%
ChemScore@GOLD	80.4	86	90.9	75.8%~83.5%
PLP2@DS	79.3	88.4	92.3	74.7%~82.8%
LigScore1@DS	76.8	86	89.5	72.3%~80.4%
GoldScore@GOLD	75.1	86.3	90.5	70.2%~79.0%
Alpha-HB@MOE	71.6	81.1	85.3	66.7%~75.4%
X-ScoreHM	65.3	77.9	83.5	60.4%~69.5%
LUDI2@DS	63.5	75.1	80.4	58.3%~67.7%
X-Score	63.5	74	80.4	58.3%~67.7%
Affinity-dG@MOE	63.5	76.1	83.9	58.6%~67.7%
LUDI1@DS	63.2	73.7	81.1	57.9%~67.4%
London-dG@MOE	63.2	78.2	83.9	57.5%~67.0%
X-ScoreHS	59.6	72.3	78.6	54.4%~63.9%
ChemScore@SYBYL	57.9	68.8	77.2	52.6%~62.1%
X-ScoreHP	56.1	67.7	75.1	50.9%~60.7%
Jain@DS	55.8	67.4	75.8	50.9%~60.4%
LUDI3@DS	53	63.2	71.9	47.7%~57.5%
ASE@MOE	50.5	60.7	67	45.3%~55.1%
PMF@SYBYL	47.7	57.9	65.3	42.8%~52.3%
PMF04@DS	46.3	54	59.6	41.1%~50.9%
G-Score@SYBYL	44.2	59.6	69.1	39.0%~48.8%
PMF@DS	42.8	51.9	58.6	37.5%~47.4%
ΔSAS	30.2	44.6	51.6	25.6%~34.4%
D-Score@SYBYL	26	40	51.9	21.4%~30.2%

I.6.4 Docking Power (without native pose)

scoring function	kernel	TOP1	TOP2	TOP3	90%_confidence_interval
RS	RBF	84.9	90.2	92.6	80.702~87.719
FS	RBF	84.9	90.2	92.6	80.702~87.719
RS+WS	RBF	84.9	90.2	92.6	80.702~88.070
RS+DS	RBF	84.9	90.2	92.6	80.702~87.719
RS+DS	MATERN	84.9	90.2	92.6	80.702~87.719
RS	MATERN	84.6	90.2	92.6	80.351~87.719
RS+WS	MATERN	84.6	89.8	93	80.351~87.368
RS+DS	RATIONAL_QUADRATIC	81.4	90.2	92.3	77.193~84.912
FS	MATERN	81.1	88.8	91.2	76.491~84.211
RS	RATIONAL_QUADRATIC	78.6	88.4	91.2	74.035~81.754
RS+WS	RATIONAL_QUADRATIC	78.6	87.7	91.9	74.035~82.105
RS	RBF+WHITE	78.2	88.1	90.2	73.333~81.754
FS	RATIONAL_QUADRATIC	77.9	86.3	90.5	73.333~81.404
RS+WS	RATIONAL_QUADRATIC+WHITE	77.5	87	91.6	72.982~81.053
FS	RBF+WHITE	77.5	87	90.9	72.982~81.053
RS	RATIONAL_QUADRATIC+WHITE	77.5	85.6	90.2	72.982~81.053
FS	MATERN+WHITE	77.2	86.7	92.6	72.632~80.702
FS	RATIONAL_QUADRATIC+WHITE	77.2	85.6	89.5	72.632~80.702
RS+WS	RBF+WHITE	76.8	84.6	89.1	72.281~80.351
RS	MATERN+WHITE	76.1	84.9	89.8	71.228~79.649
RS+WS	MATERN+WHITE	75.1	86.3	90.2	70.175~78.596
RS+DS	MATERN+WHITE	74.7	84.9	90.2	69.825~78.596
RS+DS	RATIONAL_QUADRATIC+WHITE	73.7	85.3	90.5	68.772~77.544
RS+DS	RBF+WHITE	72.3	82.5	89.5	67.368~76.140
FS+WS+CS+DS	MATERN+WHITE	57.2	66	73	52.281~61.754
FS+WS+CS+DS	RBF+WHITE	54.7	68.8	75.1	49.474~58.947
FS+WS+CS+DS	MATERN	54.4	66.3	73.3	49.123~58.947
FS+WS+CS+DS	RATIONAL_QUADRATIC	51.2	67	75.1	45.965~55.789
FS+WS+CS+DS	RATIONAL_QUADRATIC+WHITE	51.2	67	73	45.965~55.789
RS+CS	RBF+WHITE	50.2	59.3	68.1	44.912~54.737
FS+WS+CS+DS	RBF	49.5	66.3	72.3	44.561~54.035
RS+WS+CS+DS	MATERN	49.1	63.5	69.5	43.860~53.684
RS+WS+CS+DS	RBF+WHITE	49.1	61.1	69.1	43.860~53.684
RS+WS+CS+DS	RBF	48.4	61.1	69.5	43.158~52.982
RS+WS+CS+DS	MATERN+WHITE	48.1	62.8	68.8	43.158~52.632
KS+WS+CS+DS	RATIONAL_QUADRATIC+WHITE	47.7	61.4	70.2	42.456~52.281
KS+WS+CS+DS	KATIONAL_QUADRATIC	46.7	61.8	70.9	41.404~51.228
KS+CS	MATERN+WHITE	45.3	57.9	66.7	40.000~49.825
KS+CS	MATERN	43.5	59.3	69.1	38.246~48.070
KS+CS	KATIONAL_QUADRATIC+WHITE	43.2	51.9	63.5	57.895~47.719
KS+CS	RATIONAL_QUADRATIC	40.4	53.7	62.5	35.439~44.912
RS+CS	KBF	34	46.7	54.7	29.123~38.596

Tabela 111: Experimento 9 - Desempenho das funções de escore no CASF-2016 no teste do *Docking Power (without native pose)*.

o leste do Docking Tower (without huitve	e pose).	лиари	iuo uc.	50 ct al. (2010).
scoring function	TOP1	TOP2	TOP3	90%_confidence_interval
Δ VinaRF20	84.9	91.6	93.3	80.7%~87.7%
GP_RBF_RS	84.9	90.2	92.6	80.7%~87.7%
GP_MATERN_RS+DS	84.9	90.2	92.6	80.7%~87.7%
GlideScore-SP	84.6	90.5	92.6	80.0%~87.0%
AutodockVina	84.6	90.2	92.6	80.4%~87.4%
ChemPLP@GOLD	83.2	90.5	93.3	78.6%~86.3%
GBVI/WSA-dG@MOE	82.1	88.4	91.6	77.5%~85.3%
GlideScore-XP	81.8	89.5	93	76.8%~84.6%
GP_RATIONAL_QUADRATIC_RS+DS	81.4	90.2	92.3	77.2%~84.9%
PLP1@DS	81.1	88.4	91.6	76.5%~84.2%
LigScore2@DS	80.4	91.2	94.4	75.8%~83.9%
DrugScoreCSD	80.4	89.5	91.9	76.1%~83.9%
DrugScore2018	79.3	86.3	92.3	74.7%~82.8%
ChemScore@GOLD	79.3	85.6	90.2	74.4%~82.5%
ASP@GOLD	78.9	85.6	90.5	74.4%~82.5%
GP_RBF+WHITE_RS	78.2	88.1	90.2	73.3%~81.8%
GP_RATIONAL_QUADRATIC+WHITE_RS	77.5	85.6	90.2	73.0%~81.1%
PLP2@DS	77.2	87.4	91.6	72.5%~80.7%
GP_MATERN+WHITE_FS	77.2	86.7	92.6	72.6%~80.7%
GoldScore@GOLD	74.7	86.3	90.5	69.8%~78.6%
LigScore1@DS	74	83.2	87.7	69.1%~77.9%
Alpha-HB@MOE	70.5	80.4	84.6	65.6%~74.4%
X-ScoreHM	65.6	77.5	83.2	60.7%~70.2%
X-Score	63.5	73.3	79.6	58.3%~67.7%
LUDI2@DS	63.2	74	80.4	57.9%~67.4%
London-dG@MOE	62.1	77.2	83.5	56.5%~66.0%
Affinity-dG@MOE	62.1	75.1	81.8	56.8%~66.3%
LUDI1@DS	61.8	73.7	80.7	56.5%~66.0%
X-ScoreHS	59.3	70.9	77.5	54.0%~63.9%
ChemScore@SYBYL	57.2	68.4	76.5	51.9%~61.8%
X-ScoreHP	55.4	67	74.7	50.2%~60.0%
Jain@DS	55.1	67.4	75.8	49.8%~59.7%
LUDI3@DS	52.6	63.2	71.2	47.4%~57.2%
ASE@MOE	49.8	59.3	65.3	44.6%~54.4%
PMF@SYBYL	47.7	56.5	63.9	42.5%~52.3%
PMF04@DS	44.6	52.6	58.2	39.3%~49.1%
G-Score@SYBYL	44.2	59.6	69.1	39.0%~48.8%
PMF@DS	42.1	51.2	57.5	36.8%~46.7%
ΔSAS	30.2	44.2	51.9	25.6%~34.4%
D-Score@SYBYL	26	40	51.9	21.8%~30.2%

Tabela 112: Experimento 9 - Comparação com outras funcões de escore do CASF-2016 no teste do *Docking Power (without native pose)*. Adaptado de: SU et al. (2018).

I.6.5 Forward Screening Power

scoring function	kernel	TOP1	TOP5	TOP10	90%_confidence_interval
RS	RBF	29.8	40.4	50.9	19.298~38.596
FS	RBF	29.8	40.4	50.9	19.298~38.596
RS+WS	RBF	29.8	40.4	50.9	19.298~38.596
RS+DS	RBF	29.8	40.4	50.9	19.298~38.596
RS	MATERN	29.8	40.4	50.9	19.298~38.596
RS+WS	MATERN	29.8	40.4	50.9	19.298~38.596
RS+DS	MATERN	28.1	40.4	50.9	17.544~36.842
RS	RATIONAL_QUADRATIC	28.1	40.4	42.1	17.544~36.842
FS	MATERN	28.1	38.6	56.1	17.544~36.842
RS	RATIONAL_QUADRATIC+WHITE	28.1	38.6	47.4	17.544~36.842
RS+WS	RATIONAL_QUADRATIC	28.1	36.8	49.1	17.544~36.842
RS+WS	RATIONAL_QUADRATIC+WHITE	28.1	36.8	49.1	17.544~36.842
FS	RATIONAL_QUADRATIC	26.3	43.9	49.1	15.789~35.088
RS	RBF+WHITE	26.3	38.6	45.6	15.789~35.088
RS+WS	MATERN+WHITE	26.3	29.8	47.4	15.789~35.088
RS	MATERN+WHITE	24.6	35.1	45.6	14.035~33.333
RS+WS	RBF+WHITE	24.6	33.3	45.6	14.035~33.333
RS+DS	RATIONAL_QUADRATIC	22.8	45.6	49.1	12.281~31.579
FS	RATIONAL_QUADRATIC+WHITE	22.8	43.9	49.1	12.281~31.579
FS	RBF+WHITE	22.8	38.6	43.9	14.035~31.579
FS	MATERN+WHITE	22.8	33.3	42.1	12.281~31.579
RS+DS	MATERN+WHITE	17.5	31.6	42.1	8.772~24.561
RS+DS	RATIONAL_QUADRATIC+WHITE	17.5	31.6	42.1	8.772~24.561
RS+DS	RBF+WHITE	12.3	28.1	38.6	5.263~19.298
FS+WS+CS+DS	RBF+WHITE	5.3	14	21.1	$0.000{\sim}10.526$
RS+CS	RBF+WHITE	3.5	15.8	21.1	0.000~7.018
FS+WS+CS+DS	MATERN+WHITE	3.5	10.5	22.8	0.000~7.018
FS+WS+CS+DS	MATERN	1.8	12.3	22.8	0.000~3.509
FS+WS+CS+DS	RATIONAL_QUADRATIC+WHITE	1.8	12.3	22.8	0.000~3.509
FS+WS+CS+DS	RATIONAL_QUADRATIC	1.8	10.5	22.8	0.000~3.509
FS+WS+CS+DS	RBF	1.8	3.5	17.5	0.000~3.509
RS+WS+CS+DS	RBF+WHITE	1.8	3.5	12.3	0.000~3.509
RS+CS	MATERN+WHITE	0	3.5	8.8	$0.000{\sim}0.000$
RS+WS+CS+DS	RBF	0	1.8	10.5	$0.000{\sim}0.000$
RS+WS+CS+DS	RATIONAL_QUADRATIC	0	1.8	10.5	$0.000{\sim}0.000$
RS+WS+CS+DS	MATERN+WHITE	0	1.8	10.5	0.000~0.000
RS+WS+CS+DS	RATIONAL_QUADRATIC+WHITE	0	1.8	8.8	0.000~0.000
RS+CS	MATERN	0	1.8	7	$0.000{\sim}0.000$
RS+CS	RATIONAL_QUADRATIC	0	1.8	7	0.000~0.000
RS+CS	RATIONAL_QUADRATIC+WHITE	0	1.8	5.3	0.000~0.000
RS+WS+CS+DS	MATERN	0	0	8.8	0.000~0.000
RS+CS	RBF	0	0	1.8	$0.000{\sim}0.000$

Tabela 113: Experimento 9 - Desempenho das funções de escore no CASF-2016 no teste do *Forward Screening Power*.

Tabela 114: Experimento 9 - Comparação com outras funcões de escore do CASF-2016 no teste do *Forward Screening Power*. Adaptado de: SU et al. (2018).

scoring function	TOP1	TOP5	TOP10	90%_confidence_interval
Δ VinaRF20	42.1	49.1	54.4	29.8%~50.9%
GlideScore-SP	36.8	54.4	63.2	24.6%~45.6%
ChemPLP@GOLD	35.1	61.4	64.9	22.8%~43.9%
AutodockVina	29.8	40.4	50.9	19.3%~38.6%
GP_MATERN_RS	29.8	40.4	50.9	19.3%~38.6%
GP_RBF_RS	29.8	40.4	50.9	19.3%~38.6%
ChemScore@GOLD	28.1	45.6	57.9	17.5%~36.8%
GP_RATIONAL_QUADRATIC+WHITE_RS	28.1	38.6	47.4	17.5%~36.8%
GP_RATIONAL_QUADRATIC_RS	28.1	40.4	42.1	17.5%~36.8%
GlideScore-XP	26.3	45.6	52.6	15.8%~35.1%
GP_MATERN+WHITE_RS+WS	26.3	29.8	47.4	15.8%~35.1%
GP_RBF+WHITE_RS	26.3	38.6	45.6	15.8%~35.1%
GBVI/WSA-dG@MOE	26.3	45.6	59.6	15.8%~35.1%
LigScore2@DS	26.3	42.1	50.9	15.8%~35.1%
DrugScoreCSD	22.8	33.3	49.1	12.3%~31.6%
ASP@GOLD	22.8	49.1	68.4	14.0%~31.6%
LigScore1@DS	22.8	36.8	49.1	14.0%~31.6%
Affinity-dG@MOE	19.3	43.9	50.9	10.5%~26.3%
DrugScore2018	15.8	31.6	38.6	7.0%~22.8%
PLP1@DS	15.8	31.6	45.6	7.0%~22.8%
GoldScore@GOLD	15.8	35.1	42.1	7.0%~22.8%
PMF04@DS	14	19.3	33.3	7.0%~21.1%
LUDI1@DS	14	29.8	42.1	5.3%~21.1%
PMF@DS	14	26.3	40.4	7.0%~21.1%
LUDI2@DS	10.5	28.1	40.4	3.5%~15.8%
PLP2@DS	8.8	29.8	52.6	3.5%~14.0%
X-ScoreHM	8.8	19.3	31.6	3.5%~14.0%
Alpha-HB@MOE	8.8	21.1	40.4	$1.8\%{\sim}14.0\%$
London-dG@MOE	7	26.3	42.1	1.8%~12.3%
PMF@SYBYL	7	19.3	28.1	1.8%~12.3%
X-Score	7	15.8	28.1	1.8%~12.3%
Jain@DS	7	15.8	33.3	1.8%~12.3%
ASE@MOE	7	12.3	28.1	1.8%~12.3%
LUDI3@DS	7	14	33.3	1.8%~12.3%
D-Score@SYBYL	5.3	17.5	26.3	$0.0\%{\sim}10.5\%$
Δ SAS	5.3	14	24.6	$0.0\%{\sim}10.5\%$
X-ScoreHS	5.3	12.3	28.1	$0.0\%{\sim}8.8\%$
G-Score@SYBYL	3.5	12.3	26.3	0.0%~7.0%
X-ScoreHP	3.5	17.5	29.8	$0.0\%{\sim}7.0\%$
ChemScore@SYBYL	1.8	15.8	31.6	0.0%~3.5%

I.6.6 Reverse Screening Power

scoring function	kernel	TOP1	TOP5	TOP10	90%_confidence_interval
RS	MATERN	14.4	22.1	31.9	10.877~17.544
RS	RBF	14	22.8	31.2	10.526~17.544
RS+WS	RBF	14	22.8	31.2	10.526~17.193
RS+WS	MATERN	14	22.5	31.6	10.526~17.544
FS	RBF	13.7	22.8	31.2	10.175~16.842
RS+DS	RBF	13.7	22.8	31.2	10.175~16.842
RS+DS	MATERN	13.7	22.8	31.2	10.175~16.842
RS+WS	RATIONAL_QUADRATIC	13.7	20.4	31.6	10.175~16.842
RS	RATIONAL_QUADRATIC	12.3	22.8	29.1	9.123~15.439
FS	MATERN	12.3	20.7	33.7	9.123~15.439
RS+DS	RATIONAL_QUADRATIC	11.9	22.5	31.2	8.772~15.088
RS+WS	RATIONAL_QUADRATIC+WHITE	11.9	19.3	29.1	8.772~15.088
RS	RATIONAL_QUADRATIC+WHITE	10.9	22.1	28.4	7.719~13.684
RS	RBF+WHITE	10.9	21.4	29.8	7.719~14.035
RS+WS	RBF+WHITE	10.5	17.5	28.4	7.368~13.333
RS+WS	MATERN+WHITE	10.5	17.2	27	7.368~13.333
RS	MATERN+WHITE	10.2	19.6	28.1	7.368~12.982
FS	MATERN+WHITE	9.1	17.2	26.3	6.316~11.930
FS	RATIONAL_QUADRATIC	8.8	21.1	32.3	5.965~11.579
FS	RBF+WHITE	8.8	16.5	23.2	5.965~11.579
FS	RATIONAL_QUADRATIC+WHITE	8.1	21.1	31.9	5.263~10.526
RS+DS	MATERN+WHITE	6.7	12.6	26.3	4.211~9.123
RS+DS	RATIONAL_QUADRATIC+WHITE	6.7	12.6	26	4.211~9.123
RS+DS	RBF+WHITE	6.3	12.3	22.1	3.860~8.772
RS+CS	RBF+WHITE	3.5	9.5	14.7	1.754~5.263
FS+WS+CS+DS	RBF+WHITE	2.8	6	13.7	1.404~4.561
RS+WS+CS+DS	MATERN+WHITE	2.5	8.1	13	1.053~3.860
FS+WS+CS+DS	MATERN+WHITE	2.1	8.1	16.5	0.702~3.509
RS+WS+CS+DS	MATERN	2.1	8.1	13.3	0.702~3.509
FS+WS+CS+DS	RATIONAL_QUADRATIC	2.1	7.4	14	0.702~3.509
RS+CS	MATERN+WHITE	2.1	6.7	13.3	0.702~3.509
RS+CS	MATERN	2.1	6.3	13	0.702~3.509
RS+WS+CS+DS	RATIONAL_QUADRATIC+WHITE	2.1	6.3	10.9	0.702~3.509
RS+WS+CS+DS	RATIONAL_QUADRATIC	2.1	6.3	10.2	0.702~3.509
RS+CS	RATIONAL_QUADRATIC+WHITE	2.1	5.6	10.9	0.702~3.509
FS+WS+CS+DS	RATIONAL_QUADRATIC+WHITE	1.8	8.4	15.8	$0.702 \sim 2.807$
FS+WS+CS+DS	MATERN	1.8	7.4	16.8	0.702~3.158
RS+WS+CS+DS	RBF+WHITE	1.4	4.9	10.2	0.351~2.456
RS+CS	RBF	1.4	4.6	8.1	0.351~2.456
RS+CS	RATIONAL_QUADRATIC	1.1	4.9	9.1	$0.000 \sim 2.105$
FS+WS+CS+DS	RBF	1.1	4.6	14	$0.000 \sim 2.105$
RS+WS+CS+DS	RBF	0.4	2.8	6.3	0.000~0.702

Tabela 115: Experimento 9 - Desempenho das funções de escore no CASF-2016 no teste do *Reverse Screening Power*.

Tabela 116: Experimento 9 - Comparação com outras funcões de escore do CASF-2016no teste do Reverse Screening Power. Adaptado de:SU et al. (2018).

scoring function	TOP1	TOP5	TOP10	90%_confidence_interval
ChemPLP@GOLD	17.5	29.1	41.1	13.7%~21.1%
GlideScore-SP	16.5	27	37.5	12.6%~20.0%
DrugScoreCSD	15.4	23.9	33	11.9%~19.0%
Δ VinaRF20	15.1	24.9	31.6	11.6%~18.6%
DrugScore2018	14.7	21.8	28.8	11.2%~17.9%
ChemScore@GOLD	14.4	27.7	39.6	10.9%~17.7%
GP_MATERN_RS	14.4	22.1	31.9	10.9%~17.5%
GlideScore-XP	14.4	23.5	34.7	10.9%~17.5%
GP_RBF_RS	14	22.8	31.2	10.5%~17.5%
GoldScore@GOLD	14	26	34	10.5%~17.2%
AutodockVina	13.7	22.8	31.2	10.5%~16.8%
GP_RATIONAL_QUADRATIC_RS+WS	13.7	20.4	31.6	10.2%~16.8%
PLP1@DS	13.7	22.1	30.2	10.2%~16.8%
PLP2@DS	13.7	22.5	30.2	10.2%~16.8%
GBVI/WSA-dG@MOE	13.3	23.9	34.7	9.8%~16.5%
LigScore1@DS	12.6	21.1	30.9	9.5%~15.8%
GP_RATIONAL_QUADRATIC+WHITE_RS+WS	11.9	19.3	29.1	8.8%~15.1%
Alpha-HB@MOE	11.9	18.6	31.2	8.8%~14.7%
LigScore2@DS	11.2	17.5	29.5	8.1%~14.4%
ASP@GOLD	10.9	22.5	31.9	7.7%~13.7%
GP_RBF+WHITE_RS	10.9	21.4	29.8	7.7%~14.0%
GP_MATERN+WHITE_RS+WS	10.5	17.2	27	7.4%~13.3%
Affinity-dG@MOE	10.2	19.3	25.6	7.4%~13.0%
LUDI1@DS	7.7	15.1	24.2	5.3%~10.5%
X-ScoreHS	7	13.3	18.2	4.6%~9.5%
X-ScoreHP	6.7	11.2	17.9	4.2%~9.1%
ChemScore@SYBYL	6	12.3	19.6	3.5%~8.1%
LUDI2@DS	6	14.7	22.5	3.5%~8.1%
Jain@DS	6	11.6	17.2	3.5%~8.1%
X-ScoreHM	6	14.4	23.2	3.9%~8.4%
X-Score	5.6	12.3	19.3	3.2%~7.7%
London-dG@MOE	5.6	11.2	19.6	3.5%~7.7%
ASE@MOE	5.3	10.2	16.5	3.2%~7.4%
G-Score@SYBYL	3.9	11.2	16.8	2.1%~5.6%
LUDI3@DS	3.2	7.4	13.7	1.4%~4.9%
PMF@DS	2.8	8.1	12.6	1.1%~4.2%
ΔSAS	2.5	8.4	11.9	1.1%~3.9%
D-Score@SYBYL	2.1	8.4	14.4	0.7%~3.5%
PMF@SYBYL	2.1	8.1	12.6	0.7%~3.5%
PMF04@DS	1.8	8.1	12.6	0.7%~3.2%

J Experimento Nro. 10

J.1 Metodologia Aplicada

Figura 84: Experimento 10 - Metodologia Aplicada.

J.2 Conjuntos de Treinamento e Teste

Tabela 117: Experimento 10 - Conjuntos de Treinamento e Teste.

Conjunto	ID	Tamanho
	refined-set18A	2085
	refined-set18B	4152
Treinamento	weak-set18	458
	csar-nrc-hiq-set	343
	csar-decoys-all-set11	3773
	core-set16	285
Teste	docking-set16	28500
	screening-set16	1624500

J.3 Descritores

Tabela 118: Experimento 10 - Descritore	es.
---	-----

ID	Tamanho
deltavina20	20

J.4 Atributo Alvo

$$score = -LogKd$$
 (24)

J.5 Modelos Preditivos

Tabela 119: Experimento 9 - Configuração dos modelos preditivos.

Método	ID	Treino	Kernels	Parâmetros
	RS	refined-set18A	Index – [PRF	Padrão
	RS+CS	refined-set18A	MATERN.	Padrão
		+csar-nrc-hiq-set	RATIONAL OUADRATIC	
Gaussian Process	RSTDS	refined-set18A	RBE+WHITE	Padrão
	K5+D5	+csar-decoys-all-set11	MATEDNI WHITE	1 aurao
	RS+WS refined-set +weak-set	refined-set18A	PATIONAL OLADPATIC+WHITEL	Dodrão
		+weak-set18	KAHONAL_QUADRAHC+WHITE]	raurau
		refined-set18A		
	RS+WS+CS+DS	+weak-set18		Padrão
		+csar-nrc-hiq-set		
		+csar-decoys-all-set11		
	FS	refined-set18B		Padrão
		refined-set18B		
		+weak-set18		Dodrão
	I'ST W STCSTDS	+csar-nrc-hiq-set		raurau
		+csar-decoys-all-set11		

J.6 Resultados

J.6.1 Scoring Power

scoring function	kernel	N	R	SD	90%_confidence_interval
RS+WS+CS+DS	MATERN	4	0.901	0.63	-1.000~1.000
FS+WS+CS+DS	MATERN	4	0.901	0.63	-1.000~1.000
RS+DS	RBF	9	0.652	1.13	0.106~0.871
FS+WS+CS+DS	RBF+WHITE	285	0.647	1.66	0.588~0.698
FS+WS+CS+DS	MATERN+WHITE	285	0.639	1.67	0.576~0.692
RS+WS	RBF+WHITE	285	0.638	1.67	0.577~0.690
FS+WS+CS+DS	RATIONAL_QUADRATIC	285	0.635	1.68	0.573~0.685
FS	RBF+WHITE	285	0.634	1.68	0.573~0.688
FS+WS+CS+DS	RATIONAL_QUADRATIC+WHITE	285	0.63	1.69	0.567~0.685
RS+WS	MATERN+WHITE	285	0.623	1.7	0.560~0.678
FS	MATERN+WHITE	285	0.622	1.7	0.556~0.678
FS	RATIONAL_QUADRATIC	285	0.621	1.7	0.556~0.678
RS+WS+CS+DS	RATIONAL_QUADRATIC	285	0.615	1.71	0.554~0.667
RS+WS+CS+DS	RBF+WHITE	285	0.614	1.72	0.553~0.667
FS	RATIONAL_QUADRATIC+WHITE	285	0.614	1.72	0.548~0.673
RS+WS	RATIONAL_QUADRATIC	285	0.605	1.73	0.538~0.665
RS+DS	RATIONAL_QUADRATIC	285	0.602	1.74	0.542~0.655
RS+WS+CS+DS	MATERN+WHITE	285	0.596	1.75	0.532~0.651
RS+DS	RBF+WHITE	285	0.595	1.75	0.524~0.656
RS+DS	MATERN+WHITE	285	0.595	1.75	0.529~0.652
RS	RBF+WHITE	285	0.593	1.75	0.525~0.651
RS+WS	RATIONAL_QUADRATIC+WHITE	285	0.591	1.75	0.518~0.650
RS+CS	RATIONAL_QUADRATIC	285	0.586	1.76	0.519~0.645
RS+WS+CS+DS	RATIONAL_QUADRATIC+WHITE	285	0.585	1.76	0.520~0.642
RS	MATERN+WHITE	285	0.58	1.77	0.511~0.640
RS+DS	RATIONAL_QUADRATIC+WHITE	284	0.569	1.78	0.501~0.626
RS	RATIONAL_QUADRATIC	285	0.568	1.79	0.497~0.631
RS+CS	RBF+WHITE	285	0.557	1.81	0.484~0.622
RS+CS	MATERN+WHITE	285	0.556	1.81	0.484~0.620
RS	RATIONAL_QUADRATIC+WHITE	285	0.553	1.81	0.480~0.618
RS+CS	RATIONAL_QUADRATIC+WHITE	285	0.526	1.85	0.452~0.593
FS	MATERN	285	0.427	1.97	0.333~0.515
RS+WS	MATERN	285	0.283	2.09	0.176~0.381
RS	MATERN	285	0.214	2.12	0.108~0.317
FS	RBF	284	0.076	2.17	-0.033~0.181
RS+WS+CS+DS	RBF	278	0.052	2.16	-0.015~0.115
RS+DS	MATERN	279	0.036	2.17	-0.025~0.101
FS+WS+CS+DS	RBF	281	0.034	2.17	-0.035~0.108
RS+CS	RBF	0	0	0	0.000~0.000
RS+CS	MATERN	0	0	0	0.000~0.000
RS+WS	RBF	285	-0.116	2.16	-0.202~-0.012
RS	RBF	285	-0.13	2.16	-0.220~-0.033

Tabela 120: Experimento 10 - Desempenho das funções de escore no CASF-2016 no teste do *Scoring Power*.

no teste do Scoring Tower. Adaptado de. 50 et al.	(201	0).		
scoring function	Ν	R	SD	90%_confidence_interval
GP_MATERN_RS+WS+CS+DS	4	0.901	0.63	-1.000~1.000
Δ VinaRF20	285	0.816	1.26	0.772~0.848
GP_RBF_RS+DS	9	0.652	1.13	0.106~0.871
GP_RBF+WHITE_FS+WS+CS+DS	285	0.647	1.66	0.588~0.698
GP_MATERN+WHITE_FS+WS+CS+DS	285	0.639	1.67	0.576~0.692
GP_RATIONAL_QUADRATIC_FS+WS+CS+DS	285	0.635	1.68	0.573~0.685
X-Score	285	0.631	1.69	0.571~0.682
GP_RATIONAL_QUADRATIC+WHITE_FS+WS+CS+DS	285	0.63	1.69	0.567~0.685
X-ScoreHS	285	0.629	1.69	0.568~0.679
ΔSAS	285	0.625	1.7	0.568~0.675
X-ScoreHP	285	0.621	1.7	0.560~0.675
ASP@GOLD	282	0.617	1.71	0.549~0.674
ChemPLP@GOLD	281	0.614	1.72	0.543~0.671
X-ScoreHM	285	0.609	1.73	0.545~0.662
AutodockVina	285	0.604	1.73	0.539~0.659
DrugScore2018	285	0.602	1.74	0.542~0.655
DrugScoreCSD	285	0.596	1.75	0.533~0.649
ASE@MOE	285	0.591	1.75	0.524~0.646
ChemScore@SYBYL	285	0.59	1.76	0.513~0.651
PLP1@DS	285	0.581	1.77	0.513~0.639
ChemScore@GOLD	279	0.574	1.78	0.501~0.634
G-Score@SYBYL	284	0.572	1.79	0.504~0.634
Alpha-HB@MOE	285	0.569	1.79	0.497~0.628
PLP2@DS	285	0.563	1.8	0.495~0.624
Affinity-dG@MOE	285	0.552	1.81	0.478~0.611
LigScore2@DS	285	0.54	1.83	0.473~0.600
D-Score@SYBYL	284	0.531	1.84	0.460~0.594
LUDI2@DS	285	0.526	1.85	0.454~0.587
GlideScore-SP	258	0.513	1.89	0.434~0.580
LUDI3@DS	285	0.502	1.88	0.432~0.563
GBVI/WSA-dG@MOE	271	0.496	1.91	0.418~0.563
LUDI1@DS	284	0.494	1.88	0.422~0.559
GlideScore-XP	252	0.467	1.95	0.376~0.545
Jain@DS	279	0.457	1.89	0.381~0.527
LigScore1@DS	285	0.425	1.97	0.344~0.496
PMF@DS	282	0.422	1.97	0.335~0.502
GoldScore@GOLD	244	0.416	1.99	0.319~0.503
London-dG@MOE	285	0.405	1.99	0.326~0.477
PMF@SYBYL	279	0.262	2.09	0.168~0.345
PMF04@DS	263	0.212	2.11	0.106~0.306

Tabela 121: Experimento 10 - Comparação com outras funcões de escore do CASF-2016 no teste do *Scoring Power*. Adaptado de: SU et al. (2018).

J.6.2 Ranking Power

scoring function	kernel	SP	tau	PI	90%_confidence_interval
RS+WS	RBF+WHITE	0.6	0.523	0.619	0.495~0.679
RS	RBF+WHITE	0.563	0.463	0.583	0.461~0.635
RS+CS	RBF+WHITE	0.561	0.474	0.587	0.447~0.649
FS+WS+CS+DS	RATIONAL QUADRATIC	0.551	0.498	0.56	0.433~0.639
FS	RBF+WHITE	0.546	0.474	0.568	0.446~0.632
FS+WS+CS+DS	RBF+WHITE	0.542	0.481	0.565	0.435~0.632
RS+WS+CS+DS	RBF+WHITE	0.542	0.47	0.559	0.433~0.626
RS+WS	MATERN+WHITE	0.542	0.467	0.564	0.442~0.618
RS+WS+CS+DS	RATIONAL QUADRATIC	0.532	0.47	0.541	0.416~0.625
RS+DS	RBF+WHITE	0.526	0.484	0.543	0.400~0.630
RS+WS+CS+DS	MATERN+WHITE	0.521	0.463	0.529	0.407~0.611
FS	MATERN+WHITE	0.518	0.463	0.533	0.402~0.616
FS+WS+CS+DS	MATERN+WHITE	0.518	0.463	0.533	0.402~0.612
RS+CS	MATERN+WHITE	0.516	0.442	0.527	0.395~0.609
RS	MATERN+WHITE	0.514	0.428	0.528	0.402~0.593
RS+DS	MATERN+WHITE	0.507	0.439	0.517	0.393~0.598
RS+WS	RATIONAL QUADRATIC	0.505	0.421	0.518	0.393~0.591
RS+DS	RATIONAL QUADRATIC	0.491	0.439	0.496	0.368~0.584
RS+CS	RATIONAL QUADRATIC	0.461	0.4	0.471	0.346~0.561
RS+WS	RATIONAL QUADRATIC+WHITE	0.46	0.389	0.469	0.351~0.551
RS+WS+CS+DS	RATIONAL QUADRATIC+WHITE	0.458	0.404	0.466	0.346~0.551
RS+DS	RATIONAL QUADRATIC+WHITE	0.456	0.407	0.463	0.339~0.551
FS+WS+CS+DS	RATIONAL QUADRATIC+WHITE	0.456	0.4	0.461	0.331~0.556
FS	RATIONAL QUADRATIC	0.453	0.382	0.473	0.335~0.546
RS	RATIONAL QUADRATIC	0.44	0.375	0.458	0.326~0.533
RS	RATIONAL QUADRATIC+WHITE	0.432	0.358	0.45	0.321~0.523
FS	RATIONAL QUADRATIC+WHITE	0.426	0.361	0.445	0.307~0.524
RS+CS	RATIONAL QUADRATIC+WHITE	0.396	0.34	0.408	0.279~0.495
FS	MATERN	0.242	0.189	0.239	0.135~0.342
RS+WS	MATERN	0.195	0.147	0.187	0.091~0.288
RS	MATERN	0.139	0.112	0.143	0.033~0.242
RS+WS+CS+DS	MATERN	0.006	0.006	0.007	0.000~0.000
FS+WS+CS+DS	MATERN	0.006	0.006	0.007	0.000~0.000
FS	RBF	0	0.039	-0.001	-0.112~0.116
RS+CS	RBF	0	0	0	0.000~0.000
RS+CS	MATERN	0	0	0	0.000~0.000
RS+DS	RBF	-0.006	-0.006	-0.001	0.000~0.000
RS	RBF	-0.16	-0.13	-0.172	-0.274~-0.039
RS+WS	RBF	-0.168	-0.123	-0.185	-0.279~-0.053
FS+WS+CS+DS	RBF	-0.174	-0.147	-0.195	-0.284~-0.060
RS+WS+CS+DS	RBF	-0.219	-0.186	-0.241	-0.326~-0.109
RS+DS	MATERN	-0.226	-0.193	-0.24	-0.337~-0.121

Tabela 122: Experimento 10 - Desempenho das funções de escore no CASF-2016 no teste do *Ranking Power*.

Tabela 123: Experimento 10 - Comparação com outras funcões de escore do CASF-2016 no teste do *Ranking Power*. Adaptado de: SU et al. (2018).

scoring function	SP	tau	PI	90%_confidence_interval
Δ VinaRF20	0.75	0.686	0.761	0.668~0.811
ChemPLP@GOLD	0.633	0.537	0.657	0.533~0.704
DrugScoreCSD	0.63	0.544	0.663	0.533~0.700
LUDI2@DS	0.629	0.543	0.657	0.532~0.700
LUDI1@DS	0.612	0.534	0.64	0.512~0.690
LigScore2@DS	0.608	0.521	0.62	0.521~0.683
DrugScore2018	0.607	0.53	0.637	0.497~0.690
Affinity-dG@MOE	0.604	0.519	0.619	0.509~0.675
X-Score	0.604	0.529	0.638	0.503~0.681
X-ScoreHM	0.603	0.522	0.641	$0.500{\sim}0.680$
GP_RBF+WHITE_RS+WS	0.6	0.523	0.619	0.495~0.679
LigScore1@DS	0.599	0.523	0.606	0.495~0.679
ChemScore@SYBYL	0.593	0.53	0.617	0.502~0.670
London-dG@MOE	0.593	0.526	0.609	0.491~0.674
G-Score@SYBYL	0.591	0.526	0.609	$0.484{\sim}0.674$
PLP2@DS	0.589	0.512	0.617	0.470~0.674
Δ SAS	0.588	0.498	0.612	$0.483 {\sim} 0.668$
PLP1@DS	0.582	0.509	0.605	0.467~0.665
D-Score@SYBYL	0.577	0.516	0.598	0.470~0.661
X-ScoreHP	0.573	0.508	0.607	0.476~0.652
ASP@GOLD	0.553	0.474	0.582	0.453~0.635
GP_RATIONAL_QUADRATIC_FS+WS+CS+DS	0.551	0.498	0.56	0.433~0.639
X-ScoreHS	0.547	0.469	0.577	0.447~0.627
GP_MATERN+WHITE_RS+WS	0.542	0.467	0.564	0.442~0.618
PMF@DS	0.537	0.47	0.559	0.432~0.621
Alpha-HB@MOE	0.535	0.477	0.558	0.407~0.637
LUDI3@DS	0.532	0.449	0.564	0.430~0.614
AutodockVina	0.528	0.453	0.557	0.432~0.609
ChemScore@GOLD	0.526	0.46	0.558	0.423~0.605
Jain@DS	0.521	0.448	0.545	0.405~0.612
GBVI/WSA-dG@MOE	0.489	0.421	0.504	0.381~0.577
PMF04@DS	0.481	0.386	0.497	0.381~0.567
GP_RATIONAL_QUADRATIC+WHITE_RS+WS	0.46	0.389	0.469	0.351~0.551
PMF@SYBYL	0.449	0.379	0.478	0.337~0.540
ASE@MOE	0.439	0.372	0.466	0.312~0.546
GlideScore-SP	0.419	0.374	0.425	0.300~0.519
GoldScore@GOLD	0.284	0.242	0.283	0.167~0.391
GlideScore-XP	0.257	0.227	0.255	0.141~0.364
GP_MATERN_FS	0.242	0.189	0.239	0.135~0.342
GP_RBF_FS	0	0.039	-0.001	-0.112~0.116

J.6.3 Docking Power

scoring function	kernel	TOP1	TOP2	TOP3	90%_confidence_interval
RS+DS	RBF	55.4	63.2	67.4	50.175~60.000
RS+WS+CS+DS	MATERN	54	62.1	66.3	48.772~58.596
FS+WS+CS+DS	MATERN	54	62.1	66.3	48.772~58.596
RS+DS	MATERN+WHITE	30.5	42.5	53.3	25.614~34.737
RS+DS	RBF+WHITE	27.4	43.9	58.6	22.807~31.579
FS+WS+CS+DS	RBF	25.3	36.1	41.4	21.053~29.474
RS+CS	MATERN	25.3	32.6	38.6	0.000~0.000
RS+DS	MATERN	25.3	32.6	38.6	20.702~29.123
RS+WS+CS+DS	RBF+WHITE	24.6	35.8	44.9	20.351~28.772
RS+WS+CS+DS	RBF	23.9	32.3	40	19.649~28.070
FS+WS+CS+DS	RATIONAL_QUADRATIC	23.2	34.7	43.9	18.947~27.018
FS	RBF+WHITE	22.1	31.2	41.8	17.895~25.965
FS+WS+CS+DS	RBF+WHITE	21.1	35.1	45.3	16.842~24.912
FS+WS+CS+DS	MATERN+WHITE	20.4	34.7	43.5	16.140~24.211
RS+WS	RBF+WHITE	20.4	32.6	40.4	16.140~24.211
RS+DS	RATIONAL_QUADRATIC	20.4	31.6	42.5	16.140~24.211
RS+WS	MATERN+WHITE	20.4	31.2	41.1	16.491~24.211
RS+CS	RATIONAL_QUADRATIC	20	35.8	43.5	16.140~23.860
RS+WS+CS+DS	MATERN+WHITE	20	33.7	40.7	16.140~23.860
RS+WS+CS+DS	RATIONAL_QUADRATIC+WHITE	20	31.9	41.8	15.789~23.860
FS	MATERN+WHITE	19.6	34	41.4	15.789~23.509
FS	MATERN	19.6	28.1	36.1	15.439~23.158
FS+WS+CS+DS	RATIONAL_QUADRATIC+WHITE	19.3	34.4	42.5	15.439~23.158
FS	RATIONAL_QUADRATIC	19.3	33.7	40	15.088~22.807
FS	RATIONAL_QUADRATIC+WHITE	19.3	32.6	40	15.439~23.158
RS+DS	RATIONAL_QUADRATIC+WHITE	18.9	30.9	44.2	15.088~22.456
RS+WS+CS+DS	RATIONAL_QUADRATIC	18.6	33.7	42.5	14.737~22.105
RS	MATERN+WHITE	18.6	31.2	40.7	14.737~22.105
RS+WS	RATIONAL_QUADRATIC	18.6	31.2	40	14.737~22.105
RS	RATIONAL_QUADRATIC	18.2	30.2	40.7	14.386~21.754
RS+CS	RBF+WHITE	17.9	30.5	38.6	14.035~21.404
RS+CS	MATERN+WHITE	17.9	29.5	42.1	14.035~21.404
RS	RBF+WHITE	17.5	31.9	41.4	13.684~21.053
RS+WS	RATIONAL_QUADRATIC+WHITE	17.5	30.5	40.7	13.684~21.053
RS	RATIONAL_QUADRATIC+WHITE	17.5	29.5	37.9	13.684~21.404
FS DG WG	KAF	16.1	26.3	33.7	12.354~19.649
KS+WS	MATEKN	15.8	28.4	38.2	12.281~19.298
KS+CS	RATIONAL_QUADRATIC+WHITE	15.8	28.1	37.9	12.281~19.298
KS+WS	KBF	15.4	24.6	33	11.930~18.947
KS	MAIEKN	14.7	24.6	34.7	11.228~17.895
K5	KBF	13.7	23.5	29.5	10.544~16.842
KS+CS	KBF	0	0	0	0.000~0.000

Tabela 124: Experimento 10 - Desempenho das funções de escore no CASF-2016 no teste do *Docking Power*.

Tabela 125: Experimento 10 - Comparação com outras funcões de escore do CASF-2016 no teste do *Docking Power*. Adaptado de: SU et al. (2018).

scoring function	TOP1	TOP2	TOP3	90%_confidence_interval
AutodockVina	90.2	95.8	97.2	86.7%~92.6%
Δ VinaRF20	89.1	94.4	96.5	85.6%~91.6%
GlideScore-SP	87.7	91.9	93.7	83.5%~89.8%
DrugScoreCSD	87.4	93.3	95.1	83.2%~90.2%
GBVI/WSA-dG@MOE	87	91.9	93.3	83.2%~89.5%
ChemPLP@GOLD	86	93.7	96.1	81.8%~88.8%
LigScore2@DS	85.6	93.3	96.5	81.4%~88.4%
GlideScore-XP	83.9	90.2	94.4	79.3%~86.7%
DrugScore2018	83.5	89.5	94	79.3%~86.7%
PLP1@DS	82.8	90.5	94	78.6%~86.0%
ASP@GOLD	81.1	88.4	93	76.5%~84.2%
ChemScore@GOLD	80.4	86	90.9	75.8%~83.5%
PLP2@DS	79.3	88.4	92.3	74.7%~82.8%
LigScore1@DS	76.8	86	89.5	72.3%~80.4%
GoldScore@GOLD	75.1	86.3	90.5	70.2%~79.0%
Alpha-HB@MOE	71.6	81.1	85.3	66.7%~75.4%
X-ScoreHM	65.3	77.9	83.5	60.4%~69.5%
X-Score	63.5	74	80.4	58.3%~67.7%
Affinity-dG@MOE	63.5	76.1	83.9	58.6%~67.7%
LUDI2@DS	63.5	75.1	80.4	58.3%~67.7%
London-dG@MOE	63.2	78.2	83.9	57.5%~67.0%
LUDI1@DS	63.2	73.7	81.1	57.9%~67.4%
X-ScoreHS	59.6	72.3	78.6	54.4%~63.9%
ChemScore@SYBYL	57.9	68.8	77.2	52.6%~62.1%
X-ScoreHP	56.1	67.7	75.1	50.9%~60.7%
Jain@DS	55.8	67.4	75.8	50.9%~60.4%
GP_RBF_RS+DS	55.4	63.2	67.4	50.2%~60.0%
GP_MATERN_RS+WS+CS+DS	54	62.1	66.3	48.8%~58.6%
LUDI3@DS	53	63.2	71.9	47.7%~57.5%
ASE@MOE	50.5	60.7	67	45.3%~55.1%
PMF@SYBYL	47.7	57.9	65.3	42.8%~52.3%
PMF04@DS	46.3	54	59.6	41.1%~50.9%
G-Score@SYBYL	44.2	59.6	69.1	39.0%~48.8%
PMF@DS	42.8	51.9	58.6	37.5%~47.4%
GP_MATERN_WHITE_RS+DS	30.5	42.5	53.3	25.6%~34.7%
ΔSAS	30.2	44.6	51.6	25.6%~34.4%
GP_RBF_WHITE_RS+DS	27.4	43.9	58.6	22.8%~31.6%
D-Score@SYBYL	26	40	51.9	21.4%~30.2%
GP_RATIONAL_QUADRATIC_FS+WS+CS+DS	23.2	34.7	43.9	18.9%~27.0%
GP_RATIONAL_QUADRATIC_WHITE_RS+WS+CS+DS	20	31.9	41.8	15.8%~23.9%

J.6.4 Docking Power (without native pose)

scoring function	kernel	TOP1	TOP2	TOP3	90%_confidence_interval
RS+DS	RBF	54.4	60.7	65.3	48.772~58.596
RS+DS	MATERN+WHITE	30.2	41.8	52.3	25.614~34.386
RS+DS	RBF+WHITE	26.7	43.5	58.2	22.105~30.877
RS+DS	MATERN	24.9	31.6	37.5	20.351~29.123
RS+WS+CS+DS	RBF+WHITE	24.2	35.4	44.9	20.000~28.070
FS+WS+CS+DS	RBF	24.2	34.4	40	20.000~28.070
RS+WS+CS+DS	RBF	23.2	31.2	38.9	18.947~27.018
FS+WS+CS+DS	RATIONAL_QUADRATIC	22.1	33.3	42.8	17.895~25.965
FS	RBF+WHITE	22.1	30.9	41.1	17.895~25.965
FS+WS+CS+DS	RBF+WHITE	21.1	35.1	44.6	17.193~24.912
RS+CS	RATIONAL_QUADRATIC	20.7	35.1	42.5	16.491~24.561
RS+WS	RBF+WHITE	20.4	32.3	40	16.140~24.211
RS+WS	MATERN+WHITE	20.4	30.9	40.4	16.140~24.211
FS+WS+CS+DS	MATERN+WHITE	20	34.4	43.2	16.140~23.860
RS+WS+CS+DS	MATERN+WHITE	20	33.3	40.7	15.789~23.860
RS+WS+CS+DS	RATIONAL_QUADRATIC+WHITE	20	31.9	41.8	16.140~23.860
RS+DS	RATIONAL_QUADRATIC	20	31.6	42.5	16.140~23.860
FS	MATERN+WHITE	19.6	33.3	40.7	15.789~23.509
FS	RATIONAL_QUADRATIC	19.3	33.3	40	15.439~22.807
FS	RATIONAL_QUADRATIC+WHITE	19.3	32.6	40	15.088~22.807
FS	MATERN	19.3	27.7	36.1	15.439~23.158
FS+WS+CS+DS	RATIONAL_QUADRATIC+WHITE	18.9	34.4	42.5	15.088~22.807
RS+DS	RATIONAL_QUADRATIC+WHITE	18.9	30.9	44.2	15.088~22.807
RS+WS	RATIONAL_QUADRATIC	18.6	30.9	40	14.737~22.105
RS+WS+CS+DS	RATIONAL_QUADRATIC	18.2	32.6	42.1	14.386~22.105
RS	MATERN+WHITE	18.2	30.9	40	14.386~21.754
RS	RATIONAL_QUADRATIC	18.2	30.2	40	14.386~21.754
RS+CS	MATERN+WHITE	17.9	29.1	41.1	14.035~21.404
RS+WS	RATIONAL_QUADRATIC+WHITE	17.5	30.5	40.7	13.684~21.053
RS+CS	RBF+WHITE	17.5	30.2	38.2	13.684~21.053
RS	RATIONAL_QUADRATIC+WHITE	17.5	29.5	37.9	13.684~21.053
RS	RBF+WHITE	17.2	31.6	41.1	13.684~20.702
FS	RBF	16.1	26.3	33.3	12.281~19.649
RS+WS	MATERN	15.8	28.1	37.9	12.281~19.298
RS+CS	RATIONAL_QUADRATIC+WHITE	15.4	27.7	37.9	11.930~18.947
RS+WS	RBF	15.1	24.6	32.6	11.579~18.246
RS	MATERN	14.7	24.2	34.4	11.228~17.895
RS	RBF	13.3	23.2	29.5	9.825~16.491
RS+CS	RBF	0	0	0	0.000~0.000
RS+CS	MATERN	0	0	0	0.000~0.000
RS+WS+CS+DS	MATERN	0	0	0	0.000~0.000
FS+WS+CS+DS	MATERN	0	0	0	0.000~0.000

Tabela 126: Experimento 10 - Desempenho das funções de escore no CASF-2016 no teste do *Docking Power (without native pose)*.

scoring function	TOP1	TOP2	TOP3	90%_confidence_interval
Δ VinaRF20	84.9	91.6	93.3	80.7%~87.7%
AutodockVina	84.6	90.2	92.6	80.4%~87.4%
GlideScore-SP	84.6	90.5	92.6	80.0%~87.0%
ChemPLP@GOLD	83.2	90.5	93.3	78.6%~86.3%
GBVI/WSA-dG@MOE	82.1	88.4	91.6	77.5%~85.3%
GlideScore-XP	81.8	89.5	93	76.8%~84.6%
PLP1@DS	81.1	88.4	91.6	76.5%~84.2%
DrugScoreCSD	80.4	89.5	91.9	76.1%~83.9%
LigScore2@DS	80.4	91.2	94.4	75.8%~83.9%
ChemScore@GOLD	79.3	85.6	90.2	74.4%~82.5%
DrugScore2018	79.3	86.3	92.3	74.7%~82.8%
ASP@GOLD	78.9	85.6	90.5	74.4%~82.5%
PLP2@DS	77.2	87.4	91.6	72.5%~80.7%
GoldScore@GOLD	74.7	86.3	90.5	69.8%~78.6%
LigScore1@DS	74	83.2	87.7	69.1%~77.9%
Alpha-HB@MOE	70.5	80.4	84.6	65.6%~74.4%
X-ScoreHM	65.6	77.5	83.2	60.7%~70.2%
X-Score	63.5	73.3	79.6	58.3%~67.7%
LUDI2@DS	63.2	74	80.4	57.9%~67.4%
Affinity-dG@MOE	62.1	75.1	81.8	56.8%~66.3%
London-dG@MOE	62.1	77.2	83.5	56.5%~66.0%
LUDI1@DS	61.8	73.7	80.7	56.5%~66.0%
X-ScoreHS	59.3	70.9	77.5	54.0%~63.9%
ChemScore@SYBYL	57.2	68.4	76.5	51.9%~61.8%
X-ScoreHP	55.4	67	74.7	50.2%~60.0%
Jain@DS	55.1	67.4	75.8	49.8%~59.7%
GP_RBF_RS+DS	54.4	60.7	65.3	48.8%~58.6%
LUDI3@DS	52.6	63.2	71.2	47.4%~57.2%
ASE@MOE	49.8	59.3	65.3	44.6%~54.4%
PMF@SYBYL	47.7	56.5	63.9	42.5%~52.3%
PMF04@DS	44.6	52.6	58.2	39.3%~49.1%
G-Score@SYBYL	44.2	59.6	69.1	39.0%~48.8%
PMF@DS	42.1	51.2	57.5	36.8%~46.7%
ΔSAS	30.2	44.2	51.9	25.6%~34.4%
GP_MATERN+WHITE_RS+DS	30.2	41.8	52.3	25.6%~34.4%
GP_RBF+WHITE_RS+DS	26.7	43.5	58.2	22.1%~30.9%
D-Score@SYBYL	26	40	51.9	21.8%~30.2%
GP_MATERN_RS+DS	24.9	31.6	37.5	20.4%~29.1%
GP_RATIONAL_QUADRATIC_FS+WS+CS+DS	22.1	33.3	42.8	17.9%~26.0%
GP_RATIONAL_QUADRATIC+WHITE_RS+WS+CS+DS	20	31.9	41.8	16.1%~23.9%

Tabela 127: Experimento 10 - Comparação com outras funcões de escore do CASF-2016 no teste do *Docking Power (without native pose)*. Adaptado de: SU et al. (2018).

J.6.5 Forward Screening Power

scoring function	kernel	TOP1	TOP5	TOP10	90%_confidence_interval
RS	RATIONAL_QUADRATIC	5.3	15.8	19.3	0.000~10.526
RS+CS	RATIONAL_QUADRATIC+WHITE	5.3	14	17.5	0.000~8.772
FS	MATERN+WHITE	5.3	12.3	24.6	0.000~10.526
RS	MATERN	5.3	12.3	14	0.000~10.526
FS+WS+CS+DS	RBF	5.3	10.5	14	0.000~10.526
RS+WS	MATERN	5.3	10.5	14	0.000~10.526
RS+WS+CS+DS	RBF	5.3	10.5	10.5	0.000~8.772
RS+DS	MATERN	5.3	10.5	10.5	0.000~8.772
RS+DS	RBF	5.3	5.3	8.8	0.000~8.772
RS	RATIONAL_QUADRATIC+WHITE	3.5	17.5	19.3	0.000~7.018
RS+CS	RBF+WHITE	3.5	15.8	26.3	0.000~7.018
RS+WS	RATIONAL_QUADRATIC	3.5	15.8	21.1	0.000~7.018
RS+WS	RATIONAL_QUADRATIC+WHITE	3.5	15.8	21.1	0.000~7.018
RS+DS	RBF+WHITE	3.5	14	28.1	0.000~7.018
FS	RBF+WHITE	3.5	14	26.3	0.000~7.018
RS+DS	MATERN+WHITE	3.5	14	26.3	0.000~7.018
FS	RATIONAL_QUADRATIC	3.5	14	24.6	0.000~7.018
RS+CS	MATERN+WHITE	3.5	14	24.6	0.000~7.018
RS+CS	RATIONAL_QUADRATIC	3.5	12.3	26.3	0.000~7.018
FS	RATIONAL_QUADRATIC+WHITE	3.5	12.3	26.3	0.000~7.018
RS+WS	RBF+WHITE	3.5	12.3	24.6	0.000~7.018
FS+WS+CS+DS	RBF+WHITE	3.5	12.3	24.6	0.000~7.018
RS+WS	MATERN+WHITE	3.5	12.3	24.6	0.000~7.018
RS+WS+CS+DS	MATERN+WHITE	3.5	12.3	24.6	0.000~7.018
RS+DS	RATIONAL_QUADRATIC	3.5	12.3	22.8	0.000~7.018
FS+WS+CS+DS	RATIONAL_QUADRATIC	3.5	12.3	22.8	0.000~7.018
FS+WS+CS+DS	RATIONAL_QUADRATIC+WHITE	3.5	12.3	22.8	0.000~7.018
FS	MATERN	3.5	12.3	19.3	0.000~7.018
FS+WS+CS+DS	MATERN+WHITE	3.5	8.8	21.1	0.000~7.018
RS+CS	RBF	3.5	3.5	7	0.000~7.018
RS+CS	MATERN	3.5	3.5	7	0.000~7.018
RS+WS+CS+DS	MATERN	3.5	3.5	7	0.000~7.018
FS+WS+CS+DS	MATERN	3.5	3.5	7	0.000~7.018
RS+WS+CS+DS	RATIONAL_QUADRATIC	1.8	14	24.6	0.000~3.509
RS	RBF+WHITE	1.8	14	24.6	0.000~3.509
RS+WS+CS+DS	RBF+WHITE	1.8	12.3	22.8	0.000~3.509
RS+DS	RATIONAL_QUADRATIC+WHITE	1.8	10.5	22.8	0.000~3.509
FS	RBF	1.8	8.8	12.3	0.000~3.509
RS+WS+CS+DS	RATIONAL_QUADRATIC+WHITE	1.8	7	24.6	0.000~3.509
RS	MATERN+WHITE	0	14	21.1	0.000~0.000
RS	RBF	0	7	8.8	0.000~0.000
RS+WS	RBF	0	5.3	8.8	$0.000{\sim}0.000$

Tabela 128: Experimento 10 - Desempenho das funções de escore no CASF-2016 no teste do *Forward Screening Power*.

TOP5 scoring function TOP1 TOP10 90%_confidence_interval 49.1 Δ VinaRF20 42.1 54.4 29.8%~50.9% GlideScore-SP 36.8 54.4 63.2 24.6%~45.6% ChemPLP@GOLD 35.1 61.4 64.9 22.8%~43.9% AutodockVina 29.8 40.4 50.9 19.3%~38.6% ChemScore@GOLD 28.1 45.6 57.9 17.5%~36.8% GBVI/WSA-dG@MOE 26.3 45.6 59.6 15.8%~35.1% GlideScore-XP 45.6 52.6 15.8%~35.1% 26.3 LigScore2@DS 26.3 42.1 50.9 15.8%~35.1% ASP@GOLD 22.8 49.1 68.4 14.0%~31.6% LigScore1@DS 22.8 36.8 49.1 14.0%~31.6% DrugScoreCSD 22.8 33.3 49.1 12.3%~31.6% Affinity-dG@MOE 19.3 43.9 50.9 10.5%~26.3% DrugScore2018 15.8 31.6 38.6 7.0%~22.8% PLP1@DS 15.8 31.6 45.6 7.0%~22.8% GoldScore@GOLD 15.8 35.1 42.1 7.0%~22.8% PMF04@DS 14 19.3 33.3 7.0%~21.1% 29.8 42.1 5.3%~21.1% LUDI1@DS 14 PMF@DS 14 26.3 40.4 7.0%~21.1% LUDI2@DS 10.5 28.1 40.4 3.5%~15.8% PLP2@DS 8.8 29.8 52.6 3.5%~14.0% Alpha-HB@MOE 8.8 21.1 40.4 1.8%~14.0% X-ScoreHM 8.8 19.3 31.6 3.5%~14.0% 7 12.3 1.8%~12.3% ASE@MOE 28.1 7 1.8%~12.3% LUDI3@DS 14 33.3 Jain@DS 7 15.8 33.3 1.8%~12.3% X-Score 7 15.8 1.8%~12.3% 28.1 PMF@SYBYL 7 19.3 28.1 1.8%~12.3% London-dG@MOE 7 26.3 42.1 1.8%~12.3% **GP_RATIONAL_QUADRATIC_RS** 5.3 15.8 19.3 0.0%~10.5% **GP_MATERN+WHITE_FS** 5.3 12.3 24.6 0.0%~10.5% X-ScoreHS 5.3 12.3 28.1 0.0%~8.8% D-Score@SYBYL 5.3 17.5 26.3 0.0%~10.5% ΔSAS 5.3 24.6 0.0%~10.5% 14 GP_RBF_RS+DS 5.3 5.3 8.8 $0.0\% \sim 8.8\%$ **GP_MATERN_RS** 5.3 12.3 14 0.0%~10.5% GP_RATIONAL_QUADRATIC+WHITE_RS+CS 5.3 14 17.5 0.0%~8.8% G-Score@SYBYL 3.5 12.3 26.3 $0.0\%{\sim}7.0\%$ X-ScoreHP 3.5 17.5 29.8 $0.0\%{\sim}7.0\%$ **GP_RBF+WHITE_FS** 26.3 0.0%~7.0% 3.5 14 ChemScore@SYBYL 1.8 15.8 31.6 0.0%~3.5%

Tabela 129: Experimento 10 - Comparação com outras funcões de escore do CASF-2016 no teste do *Forward Screening Power*. Adaptado de: SU et al. (2018).

scoring function	kernel	TOP1	TOP5	TOP10	90%_confidence_interval
FS+WS+CS+DS	RBF	6	12.3	18.9	3.509~8.070
RS+DS	MATERN	5.3	13.7	19.6	3.158~7.368
RS+WS+CS+DS	RBF	5.3	11.2	18.9	3.158~7.368
FS+WS+CS+DS	RATIONAL_QUADRATIC	3.5	6	11.9	1.754~5.263
FS+WS+CS+DS	RBF+WHITE	3.5	4.9	9.5	1.754~5.263
RS+WS+CS+DS	RBF+WHITE	3.5	3.9	9.8	1.754~5.263
RS+WS	MATERN	3.2	8.1	14.4	1.404~4.912
FS	RBF+WHITE	3.2	6.7	13.3	1.404~4.912
RS+DS	MATERN+WHITE	3.2	4.9	14.4	1.404~4.912
RS+WS	MATERN+WHITE	3.2	4.9	10.5	1.404~4.912
RS+DS	RBF+WHITE	2.8	8.1	15.1	1.404~4.211
RS+WS	RATIONAL_QUADRATIC	2.8	6.7	11.9	1.404~4.561
RS+DS	RATIONAL_QUADRATIC	2.8	6.3	11.9	1.053~4.211
RS+WS+CS+DS	RATIONAL_QUADRATIC	2.8	5.6	12.6	1.404~4.211
FS	MATERN	2.5	6.3	15.1	1.053~3.860
FS	MATERN+WHITE	2.5	5.6	12.6	1.053~3.860
RS	MATERN+WHITE	2.5	5.6	8.1	1.053~3.860
FS+WS+CS+DS	MATERN+WHITE	2.5	4.9	10.5	1.053~3.860
RS+DS	RATIONAL_QUADRATIC+WHITE	2.5	4.9	9.1	1.053~3.860
RS	RBF	2.1	7.4	10.2	0.702~3.509
RS+WS	RBF	2.1	6.7	10.2	0.702~3.509
RS+WS	RBF+WHITE	2.1	6	12.6	0.702~3.509
RS+DS	RBF	2.1	5.6	10.9	0.702~3.509
RS+WS+CS+DS	MATERN+WHITE	2.1	4.6	9.8	0.702~3.509
RS	MATERN	1.8	7.7	16.1	0.702~3.158
RS+WS+CS+DS	MATERN	1.8	6	10.9	0.702~3.158
RS+WS	RATIONAL_QUADRATIC+WHITE	1.8	5.3	10.9	0.566~2.807
FS+WS+CS+DS	MATERN	1.8	5.3	10.5	0.702~3.158
RS+CS	RBF	1.8	5.3	10.2	0.702~3.158
RS	RBF+WHITE	1.8	4.9	11.6	0.351~2.807
KS	RATIONAL_QUADRATIC+WHITE	1.8	4.6	8.4	0.702~3.158
FS	RATIONAL_QUADRATIC	1.4	6./	13.3	0.351~2.456
FS DC	RATIONAL_QUADRATIC+WHITE	1.4	5.6	12.6	0.351~2.456
KS DS+CS	RATIONAL QUADRATIC	1.4	4.6	9.5	0.351~2.456
KS+US	RATIONAL QUADRATIC	1.1	4.9	11.9	0.000~2.105
R5+W5+C5+D5	KAHUNAL-QUADKAHU+WHITE	1.1	4.9	9.5	0.000~2.105
KS+US		1.1	4.0	9.5	0.000~2.105
FS WC CC DC	KDF DATIONAL OUADDATIC, WHITE	1.1	4.2	12.3	0.000~2.105
PS+WS+US+DS	KATIONAL_QUADKATIC+WHITE	1.1	4.2	10.2	$0.000 \sim 2.105$
RS+CS	RATIONAL_QUADKATIC+WHITE		4.2	ð.4	$0.000 \sim 1.404$
DS+CS	NDF+WILLE MATEDN, WHITE	0.7	2.3	9.5	0.000~1.404
KS+CS	MAIEKN+WHIIE	0.7	2.5	0	0.000~1.404

Tabela 130: Experimento 10 - Desempenho das funções de escore no CASF-2016 no teste do *Reverse Screening Power*.

Tabela 131: Experimento 10 - Comparação com outras funcões de escore do CASF-2016 no teste do *Reverse Screening Power*. Adaptado de: SU et al. (2018).

scoring function	TOP1	TOP5	TOP10	90%_confidence_interval
ChemPLP@GOLD	17.5	29.1	41.1	13.7%~21.1%
GlideScore-SP	16.5	27	37.5	12.6%~20.0%
DrugScoreCSD	15.4	23.9	33	11.9%~19.0%
Δ VinaRF20	15.1	24.9	31.6	11.6%~18.6%
DrugScore2018	14.7	21.8	28.8	11.2%~17.9%
GlideScore-XP	14.4	23.5	34.7	10.9%~17.5%
ChemScore@GOLD	14.4	27.7	39.6	10.9%~17.7%
GoldScore@GOLD	14	26	34	10.5%~17.2%
AutodockVina	13.7	22.8	31.2	10.5%~16.8%
PLP2@DS	13.7	22.5	30.2	10.2%~16.8%
PLP1@DS	13.7	22.1	30.2	10.2%~16.8%
GBVI/WSA-dG@MOE	13.3	23.9	34.7	9.8%~16.5%
LigScore1@DS	12.6	21.1	30.9	9.5%~15.8%
Alpha-HB@MOE	11.9	18.6	31.2	8.8%~14.7%
LigScore2@DS	11.2	17.5	29.5	8.1%~14.4%
ASP@GOLD	10.9	22.5	31.9	7.7%~13.7%
Affinity-dG@MOE	10.2	19.3	25.6	7.4%~13.0%
LUDI1@DS	7.7	15.1	24.2	5.3%~10.5%
X-ScoreHS	7	13.3	18.2	4.6%~9.5%
X-ScoreHP	6.7	11.2	17.9	4.2%~9.1%
Jain@DS	6	11.6	17.2	3.5%~8.1%
X-ScoreHM	6	14.4	23.2	3.9%~8.4%
LUDI2@DS	6	14.7	22.5	3.5%~8.1%
GP_RBF_FS+WS+CS+DS	6	12.3	18.9	3.5%~8.1%
ChemScore@SYBYL	6	12.3	19.6	3.5%~8.1%
X-Score	5.6	12.3	19.3	3.2%~7.7%
London-dG@MOE	5.6	11.2	19.6	3.5%~7.7%
GP_MATERN_RS+DS	5.3	13.7	19.6	3.2%~7.4%
ASE@MOE	5.3	10.2	16.5	3.2%~7.4%
G-Score@SYBYL	3.9	11.2	16.8	2.1%~5.6%
GP_RBF+WHITE_RS+WS+CS+DS	3.5	3.9	9.8	1.8%~5.3%
GP_RATIONAL_QUADRATIC_FS+WS+CS+DS	3.5	6	11.9	1.8%~5.3%
LUDI3@DS	3.2	7.4	13.7	$1.4\%{\sim}4.9\%$
GP_MATERN+WHITE_RS+WS	3.2	4.9	10.5	1.4%~4.9%
PMF@DS	2.8	8.1	12.6	1.1%~4.2%
ΔSAS	2.5	8.4	11.9	1.1%~3.9%
GP_RATIONAL_QUADRATIC+WHITE_RS+DS	2.5	4.9	9.1	1.1%~3.9%
D-Score@SYBYL	2.1	8.4	14.4	0.7%~3.5%
PMF@SYBYL	2.1	8.1	12.6	0.7%~3.5%
PMF04@DS	1.8	8.1	12.6	0.7%~3.2%

K Experimento Nro. 11

K.1 Metodologia Aplicada

Figura 85: Experimento 11 - Metodologia Aplicada.

K.2 Conjuntos de Treinamento e Teste

T 1 1	100 5		
Tabela	132: Experime	ento 11 - Conjuntos de T	reinamento e Teste.
	Conjunto	ID	Tamanha

Conjunto	ID	Tamanho
	refined-set18B	4463
Trainamanta	weak-set18	467
memamento	csar-nrc-hiq-set	343
	csar-decoys-all-set11	3773
	core-set16	285
Teste	docking-set16	28500
	screening-set16	1624500

K.3 Descritores

ID	Tamanho
amino20	20
dssp34	34
binana350	350
padel92	92
rdkt2d147	147
rdkt3d11	11
sasa10	10
vina58	58

Tabela 133:	Experimento	11 - Descritores.
-------------	-------------	-------------------

K.4 Atributo Alvo

score = -LogKd (25)

K.5 Modelos Preditivos

Método	ID	Treino	Parâmetros
	FS	refined-set18B	$n_{\text{estimators}} = 500$
	CS	csar-nrc-hiq-set	$n_{\text{estimators}} = 500$
	FS+WS	refined-set18B	n estimators - 500
	1.01.102	+weak-set18	
Random Forest	CS+WS	csar-nrc-hiq-set	n estimators – 500
		+weak-set18	
	FS+DS	refined-set18B	n estimators - 500
		+csar-decoys-all-set11	
	CS+DS	csar-nrc-hiq-set	n estimators – 500
	COTDO	+csar-decoys-all-set11	
		refined-set18B	
	FS+WS+DS	+weak-set18	$n_{\text{estimators}} = 500$
		+csar-decoys-all-set11	
		csar-nrc-hiq-set	
	CS+WS+DS	+weak-set18	$n_{\text{estimators}} = 500$
		+csar-decoys-all-set11	
		refined-set18B	
	FS+CS+WS+DS	+csar-nrc-hiq-set	n estimators – 500
		+weak-set18	
		+csar-decoys-all-set11	

Tabela 134: Experimento 11 - Configuração dos modelos preditivos.

K.6 Resultados

K.6.1 Scoring Power

Tabela 135: Experimento 11 - Desempenho das funções de escore no CASF-2016 no teste do *Scoring Power*.

scoring function	N	R	SD
FS+WS	285	0.817	1.25
FS	285	0.81	1.28
CS+WS+DS	285	0.802	1.3
FS+WS+DS	285	0.8	1.3
FS+CS+WS+DS	285	0.794	1.32
FS+DS	285	0.785	1.35
CS	285	0.645	1.66
CS+WS	285	0.640	1.67
CS+DS	285	0.640	1.67

ower. Adaptado de:	SU et	al. (2	.018).	
scoring function	Rank	N	R	SD
FS+WS	1	285	0.817	1.25
Δ VinaRF20	2	285	0.816	1.26
FS	3	285	0.81	1.28
CS+WS+DS	4	285	0.802	1.3
FS+WS+DS	5	285	0.8	1.3
FS+CS+WS+DS	6	285	0.794	1.32
FS+DS	7	285	0.785	1.35
CS	8	285	0.645	1.66
CS+WS	9	285	0.640	1.67
CS+DS	10	285	0.640	1.67
X-Score	11	285	0.631	1.69
X-ScoreHS	12	285	0.629	1.69
Δ SAS	13	285	0.625	1.7
X-ScoreHP	14	285	0.621	1.7
ASP@GOLD	15	282	0.617	1.71
ChemPLP@GOLD	16	281	0.614	1.72
X-ScoreHM	17	285	0.609	1.73
AutodockVina	18	285	0.604	1.73
DrugScore2018	19	285	0.602	1.74
DrugScoreCSD	20	285	0.596	1.75
ASE@MOE	21	285	0.591	1.75
ChemScore@SYBYL	22	285	0.59	1.76
PLP1@DS	23	285	0.581	1.77
ChemScore@GOLD	24	279	0.574	1.78
G-Score@SYBYL	25	284	0.572	1.79
Alpha-HB@MOE	26	285	0.569	1.79
PLP2@DS	27	285	0.563	1.8
Affinity-dG@MOE	28	285	0.552	1.81
LigScore2@DS	29	285	0.54	1.83
D-Score@SYBYL	30	284	0.531	1.84
LUDI2@DS	31	285	0.526	1.85
GlideScore-SP	32	258	0.513	1.89
LUDI3@DS	33	285	0.502	1.88
GBVI/WSA-dG@MOE	34	271	0.496	1.91
LUDI1@DS	35	284	0.494	1.88
GlideScore-XP	36	252	0.467	1.95
Jain@DS	37	279	0.457	1.89
LigScore1@DS	38	285	0.425	1.97
PMF@DS	39	282	0.422	1.97
GoldScore@GOLD	40	244	0.416	1.99
London-dG@MOE	41	285	0.405	1.99
PMF@SYBYL	42	279	0.262	2.09
PMF04@DS	43	263	0.212	2.11
	-			1

Tabela 136: Experimento 11 - Comparação com outras funcões de escore do CASF-2016 no teste do *Scoring Power*. Adaptado de: SU et al. (2018).

K.6.2 Ranking Power

scoring function	SP	tau	PI
FS	0.695	0.607	0.728
FS+WS	0.680	0.596	0.712
CS+WS+DS	0.677	0.607	0.709
FS+CS+WS+DS	0.675	0.604	0.703
FS+WS+DS	0.674	0.6	0.7
FS+DS	0.665	0.593	0.691
CS+WS	0.607	0.532	0.632
CS	0.6	0.532	0.629
CS+DS	0.6	0.519	0.633

Tabela 137: Experimento 11 - Desempenho das funções de escore no CASF-2016 no teste do *Ranking Power*.

ower. Adaptado de: SU et al. (2018).				
scoring function	Rank	SP	tau	PI
Δ VinaRF20	1	0.75	0.685	0.760
FS	2	0.695	0.607	0.728
FS+WS	3	0.680	0.596	0.712
CS+WS+DS	4	0.677	0.607	0.709
FS+CS+WS+DS	5	0.675	0.604	0.703
FS+WS+DS	6	0.674	0.6	0.7
FS+DS	7	0.665	0.593	0.691
ChemPLP@GOLD	8	0.633	0.537	0.657
DrugScoreCSD	9	0.63	0.544	0.662
LUDI2@DS	10	0.629	0.542	0.657
LUDI1@DS	11	0.612	0.534	0.64
LigScore2@DS	12	0.608	0.521	0.62
CS+WS	13	0.607	0.532	0.632
DrugScore2018	14	0.607	0.53	0.637
X-Score	15	0.604	0.529	0.638
Affinity-dG@MOE	16	0.604	0.519	0.619
X-ScoreHM	17	0.603	0.522	0.640
CS	18	0.6	0.532	0.629
CS+DS	19	0.6	0.519	0.633
LigScore1@DS	20	0.599	0.523	0.606
ChemScore@SYBYL	21	0.593	0.53	0.617
London-dG@MOE	22	0.593	0.526	0.609
G-Score@SYBYL	23	0.591	0.526	0.609
PLP2@DS	24	0.589	0.512	0.617
Δ SAS	25	0.588	0.498	0.612
PLP1@DS	26	0.582	0.509	0.605
D-Score@SYBYL	27	0.577	0.516	0.598
X-ScoreHP	28	0.573	0.508	0.607
ASP@GOLD	29	0.552	0.474	0.582
X-ScoreHS	30	0.547	0.469	0.577
PMF@DS	31	0.537	0.47	0.558
Alpha-HB@MOE	32	0.535	0.477	0.557
LUDI3@DS	33	0.532	0.449	0.564
AutodockVina	34	0.528	0.452	0.557
ChemScore@GOLD	35	0.526	0.46	0.557
Jain@DS	36	0.521	0.447	0.545
GBVI/WSA-dG@MOE	37	0.489	0.421	0.504
PMF04@DS	38	0.481	0.386	0.497
PMF@SYBYL	39	0.449	0.379	0.478
ASE@MOE	40	0.439	0.372	0.466
GlideScore-SP	41	0.419	0.374	0.425
GoldScore@GOLD	42	0.284	0.242	0.283
GlideScore-XP	43	0.257	0.226	0.255

Tabela 138: Experimento 11 - Comparação com outras funcões de escore do CASF-2016no teste do Ranking Power. Adaptado de:SU et al. (2018).

K.6.3 Docking Power

scoring function	TOP1	TOP2	TOP3
CS+DS	77.2	87.4	92.3
FS+CS+WS+DS	72.6	83.2	89.1
CS+WS+DS	71.9	83.2	87.4
FS+WS+DS	71.2	81.8	86.0
FS+DS	69.8	82.1	84.9
CS+WS	44.2	56.8	62.5
FS+WS	41.4	50.2	56.5
FS	33.0	46.3	54.4
CS	20.7	34.7	48.1

Tabela 139: Experimento 11 - Desempenho das funções de escore no CASF-2016 no teste do *Docking Power*.

<i>Tower</i> . Adaptado de. 50 et al. (2016).				
scoring function	Rank	TOP1	TOP2	TOP3
AutodockVina	1	90.2	95.8	97.2
Δ VinaRF20	2	89.1	94.4	96.5
GlideScore-SP	3	87.7	91.9	93.7
DrugScoreCSD	4	87.4	93.3	95.1
GBVI/WSA-dG@MOE	5	87.0	91.9	93.3
ChemPLP@GOLD	6	86.0	93.7	96.1
LigScore2@DS	7	85.6	93.3	96.5
GlideScore-XP	8	83.9	90.2	94.4
DrugScore2018	9	83.5	89.5	94.0
PLP1@DS	10	82.8	90.5	94.0
ASP@GOLD	11	81.1	88.4	93.0
ChemScore@GOLD	12	80.4	86.0	90.9
PLP2@DS	13	79.3	88.4	92.3
CS+DS	14	77.2	87.4	92.3
LigScore1@DS	15	76.8	86.0	89.5
GoldScore@GOLD	16	75.1	86.3	90.5
FS+CS+WS+DS	17	72.6	83.2	89.1
CS+WS+DS	18	71.9	83.2	87.4
Alpha-HB@MOE	19	71.6	81.1	85.3
FS+WS+DS	20	71.2	81.8	86.0
FS+DS	21	69.8	82.1	84.9
X-ScoreHM	22	65.3	77.9	83.5
Affinity-dG@MOE	23	63.5	76.1	83.9
LUDI2@DS	24	63.5	75.1	80.4
X-Score	25	63.5	74.0	80.4
London-dG@MOE	26	63.2	78.2	83.9
LUDI1@DS	27	63.2	73.7	81.1
X-ScoreHS	28	59.6	72.3	78.6
ChemScore@SYBYL	29	57.9	68.8	77.2
X-ScoreHP	30	56.1	67.7	75.1
Jain@DS	31	55.8	67.4	75.8
LUDI3@DS	32	53.0	63.2	71.9
ASE@MOE	33	50.5	60.7	67.0
PMF@SYBYL	34	47.7	57.9	65.3
PMF04@DS	35	46.3	54.0	59.6
G-Score@SYBYL	36	44.2	59.6	69.1
CS+WS	37	44.2	56.8	62.5
PMF@DS	38	42.8	51.9	58.6
FS+WS	39	41.4	50.2	56.5
FS	40	33.0	46.3	54.4
ΔSAS	41	30.2	44.6	51.6
D-Score@SYBYL	42	26.0	40.0	51.9
CS	43	20.7	34.7	48.1
L		1	1	

Tabela 140: Experimento 11 - Comparação com outras funcões de escore do CASF-2016no teste do Docking Power. Adaptado de:SU et al. (2018).

K.6.4 Docking Power (without native pose)

scoring function	TOP1	TOP2	TOP3
CS+DS	74.7	86.3	91.2
CS+WS+DS	70.9	82.5	86.3
FS+CS+WS+DS	70.9	82.8	88.8
FS+WS+DS	69.5	80.0	85.6
FS+DS	69.1	81.8	84.6
CS+WS	42.5	55.1	61.4
FS+WS	41.1	49.5	56.1
FS	33.0	46.0	53.7
CS	20.4	34.4	47.7

Tabela 141: Experimento 11 - Desempenho das funções de escore no CASF-2016 no teste do *Docking Power (without native pose)*.

	re pose). I Iuu	piùao c	ic. DC
scoring function	Rank	TOP1	TOP2	TOP3
Δ VinaRF20	1	84.9	91.6	93.3
GlideScore-SP	2	84.6	90.5	92.6
AutodockVina	3	84.6	90.2	92.6
ChemPLP@GOLD	4	83.2	90.5	93.3
GBVI/WSA-dG@MOE	5	82.1	88.4	91.6
GlideScore-XP	6	81.8	89.5	93.0
PLP1@DS	7	81.1	88.4	91.6
LigScore2@DS	8	80.4	91.2	94.4
DrugScoreCSD	9	80.4	89.5	91.9
DrugScore2018	10	79.3	86.3	92.3
ChemScore@GOLD	11	79.3	85.6	90.2
ASP@GOLD	12	78.9	85.6	90.5
PLP2@DS	13	77.2	87.4	91.6
CS+DS	14	74.7	86.3	91.2
GoldScore@GOLD	15	74.7	86.3	90.5
LigScore1@DS	16	74.0	83.2	87.7
FS+CS+WS+DS	17	70.9	82.8	88.8
CS+WS+DS	18	70.9	82.5	86.3
Alpha-HB@MOE	19	70.5	80.4	84.6
FS+WS+DS	20	69.5	80.0	85.6
FS+DS	21	69.1	81.8	84.6
X-ScoreHM	22	65.6	77.5	83.2
X-Score	23	63.5	73.3	79.6
LUDI2@DS	24	63.2	74.0	80.4
London-dG@MOE	25	62.1	77.2	83.5
Affinity-dG@MOE	26	62.1	75.1	81.8
LUDI1@DS	27	61.8	73.7	80.7
X-ScoreHS	28	59.3	70.9	77.5
ChemScore@SYBYL	29	57.2	68.4	76.5
X-ScoreHP	30	55.4	67.0	74.7
Jain@DS	31	55.1	67.4	75.8
LUDI3@DS	32	52.6	63.2	71.2
ASE@MOE	33	49.8	59.3	65.3
PMF@SYBYL	34	47.7	56.5	63.9
PMF04@DS	35	44.6	52.6	58.2
G-Score@SYBYL	36	44.2	59.6	69.1
CS+WS	37	42.5	55.1	61.4
PMF@DS	38	42.1	51.2	57.5
FS+WS	39	41.1	49.5	56.1
FS	40	33.0	46.0	53.7
ΔSAS	41	30.2	44.2	51.9
D-Score@SYBYL	42	26.0	40.0	51.9
CS	43	20.4	34.4	47.7

Tabela 142: Experimento 11 - Comparação com outras funcões de escore do CASF-2016no teste do Docking Power (without native pose). Adaptado de: SU et al. (2018).

scoring function	TOP1	TOP5	TOP10	EF1	EF5	EF10
FS	17.5	26.3	35.1	5.42	2.2	1.56
FS+DS	14.0	28.1	45.6	4.67	2.45	1.89
FS+WS	14.0	22.8	33.3	4.49	2.01	1.63
FS+CS+WS+DS	12.3	26.3	43.9	4.79	2.35	1.91
CS+WS+DS	10.5	28.1	42.1	3.79	2.29	1.82
FS+WS+DS	10.5	24.6	42.1	4.07	2.15	1.73
CS+DS	8.8	28.1	42.1	3.25	2.09	1.78
CS	7.0	17.5	24.6	1.67	1.36	1.14
CS+WS	5.3	12.3	26.3	2.22	1.44	1.25

Tabela 143: Experimento 11 - Desempenho das funções de escore no CASF-2016 no teste do *Forward Screening Power*.

o <i>Forward Screening Power</i> . Adaptado de: SU et al. (2018).							
scoring function	Rank	TOP1	TOP5	TOP10	EF1	EF5	EF10
Δ VinaRF20	1	42.1	49.1	54.4	11.73	4.43	3.1
GlideScore-SP	2	36.8	54.4	63.2	11.44	5.83	3.98
ChemPLP@GOLD	3	35.1	61.4	64.9	11.91	5.29	3.59
AutodockVina	4	29.8	40.4	50.9	7.7	4.01	2.87
ChemScore@GOLD	5	28.1	45.6	57.9	8.65	3.95	2.92
GBVI/WSA-dG@MOE	6	26.3	45.6	59.6	7.62	3.61	2.77
GlideScore-XP	7	26.3	45.6	52.6	8.83	4.75	3.51
LigScore2@DS	8	26.3	42.1	50.9	6.82	3.53	2.84
ASP@GOLD	9	22.8	49.1	68.4	6.98	3.95	3.1
LigScore1@DS	10	22.8	36.8	49.1	6.32	3.68	2.74
DrugScoreCSD	11	22.8	33.3	49.1	5.9	2.97	2.54
Affinity-dG@MOE	12	19.3	43.9	50.9	5.07	2.77	2.26
FS	13	17.5	26.3	35.1	5.42	2.2	1.56
GoldScore@GOLD	14	15.8	35.1	42.1	4.27	2.86	1.98
PLP1@DS	15	15.8	31.6	45.6	3.98	2.88	2.39
DrugScore2018	16	15.8	31.6	38.6	3.66	2.25	1.89
LUDI1@DS	17	14.0	29.8	42.1	3.1	2.14	1.81
FS+DS	18	14.0	28.1	45.6	4.67	2.45	1.89
PMF@DS	19	14.0	26.3	40.4	3.76	1.76	1.59
FS+WS	20	14.0	22.8	33.3	4.49	2.01	1.63
PMF04@DS	21	14.0	19.3	33.3	3.17	1.68	1.75
FS+CS+WS+DS	22	12.3	26.3	43.9	4.79	2.35	1.91
CS+WS+DS	23	10.5	28.1	42.1	3.79	2.29	1.82
LUDI2@DS	24	10.5	28.1	40.4	2.34	2.0	1.63
FS+WS+DS	25	10.5	24.6	42.1	4.07	2.15	1.73
PLP2@DS	26	8.8	29.8	52.6	1.81	2.43	2.49
CS+DS	27	8.8	28.1	42.1	3.25	2.09	1.78
Alpha-HB@MOE	28	8.8	21.1	40.4	1.7	1.65	2.02
X-ScoreHM	29	8.8	19.3	31.6	3.21	1.39	1.31
London-dG@MOE	30	7.0	26.3	42.1	2.05	2.3	2.09
PMF@SYBYL	31	7.0	19.3	28.1	1.46	1.77	1.68
CS	32	7.0	17.5	24.6	1.67	1.36	1.14
Jain@DS	33	7.0	15.8	33.3	1.35	1.31	1.56
X-Score	34	7.0	15.8	28.1	2.68	1.31	1.23
LUDI3@DS	35	7.0	14.0	33.3	1.85	1.15	1.4
ASE@MOE	36	7.0	12.3	28.1	1.44	1.11	1.28
D-Score@SYBYL	37	5.3	17.5	26.3	1.24	1.65	1.34
Δ SAS	38	5.3	14.0	24.6	1.76	1.12	1.15
X-ScoreHS	39	5.3	12.3	28.1	2.17	1.26	1.26
CS+WS	40	5.3	12.3	26.3	2.22	1.44	1.25
X-ScoreHP	41	3.5	17.5	29.8	1.79	1.54	1.13
G-Score@SYBYL	42	3.5	12.3	26.3	0.89	1.06	1.11
ChemScore@SYBYL	43	1.8	15.8	31.6	0.79	1.26	1.41

Tabela 144: Experimento 11 - Comparação com outras funcões de escore do CASF-2016 no teste do *Forward Screening Power*. Adaptado de: SU et al. (2018).

K.6.6 Reverse Screening Power

scoring function	TOP1	TOP5	TOP10
FS+WS+DS	13.0	21.4	28.1
CS+WS+DS	13.0	21.1	27.7
FS+CS+WS+DS	11.9	23.2	29.5
FS+DS	11.9	21.4	27.4
FS+WS	11.2	18.6	24.6
FS	10.5	20.4	24.9
CS+DS	10.5	19.3	26.7
CS+WS	6.7	11.6	18.2
CS	2.5	5.3	10.2

Tabela 145: Experimento 11 - Desempenho das funções de escore no CASF-2016 no teste do *Reverse Screening Power*.
Screening Power. Adaptado de:			<u>50 et a</u>	$\frac{11}{2018}$
scoring function	Rank	TOP1	TOP5	TOP10
ChemPLP@GOLD	1	17.5	29.1	41.1
GlideScore-SP	2	16.5	27.0	37.5
DrugScoreCSD	3	15.4	23.9	33.0
Δ VinaRF20	4	15.1	24.9	31.6
DrugScore2018	5	14.7	21.8	28.8
ChemScore@GOLD	6	14.4	27.7	39.6
GlideScore-XP	7	14.4	23.5	34.7
GoldScore@GOLD	8	14.0	26.0	34.0
AutodockVina	9	13.7	22.8	31.2
PLP2@DS	10	13.7	22.5	30.2
PLP1@DS	11	13.7	22.1	30.2
GBVI/WSA-dG@MOE	12	13.3	23.9	34.7
FS+WS+DS	13	13.0	21.4	28.1
CS+WS+DS	14	13.0	21.1	27.7
LigScore1@DS	15	12.6	21.1	30.9
FS+CS+WS+DS	16	11.9	23.2	29.5
FS+DS	17	11.9	21.4	27.4
Alpha-HB@MOE	18	11.9	18.6	31.2
FS+WS	19	11.2	18.6	24.6
LigScore2@DS	20	11.2	17.5	29.5
ASP@GOLD	21	10.9	22.5	31.9
FS	22	10.5	20.4	24.9
CS+DS	23	10.5	19.3	26.7
Affinity-dG@MOE	24	10.2	19.3	25.6
LUDI1@DS	25	7.7	15.1	24.2
X-ScoreHS	26	7.0	13.3	18.2
CS+WS	27	6.7	11.6	18.2
X-ScoreHP	28	6.7	11.2	17.9
LUDI2@DS	29	6.0	14.7	22.5
X-ScoreHM	30	6.0	14.4	23.2
ChemScore@SYBYL	31	6.0	12.3	19.6
Jain@DS	32	6.0	11.6	17.2
X-Score	33	5.6	12.3	19.3
London-dG@MOE	34	5.6	11.2	19.6
ASE@MOE	35	5.3	10.2	16.5
G-Score@SYBYL	36	3.9	11.2	16.8
LUDI3@DS	37	3.2	7.4	13.7
PMF@DS	38	2.8	8.1	12.6
ΔSAS	39	2.5	8.4	11.9
CS	40	2.5	5.3	10.2
D-Score@SYBYL	41	2.1	8.4	14.4
PMF@SYBYL	42	2.1	8.1	12.6
PMF04@DS	43	1.8	8.1	12.6

Tabela 146: Experimento 11 - Comparação com outras funcões de escore do CASF-2016no teste do Reverse Screening Power. Adaptado de: SU et al. (2018).

L Experimento Nro. 12

L.1 Metodologia Aplicada

Figura 86: Experimento 12 - Metodologia Aplicada.

L.2 Conjuntos de Treinamento e Teste

Tabela 147: Experimento 12 - Conjuntos de Treinamento e Teste.

Conjunto	ID	Tamanho
	refined-set18B	4463
Trainamento	weak-set18	467
memanento	csar-nrc-hiq-set	343
	csar-decoys-all-set11	3773
	core-set16	285
Teste	docking-set16	28500
	screening-set16	1624500

L.3 Descritores

ID	Tamanho
amino20	20
dssp34	34
binana350	350
padel92	92
rdkt2d147	147
rdkt3d11	11
sasa10	10
vina-s1	1

Tabela 148: Experimento 12 - Descritores.

L.4 Atributo Alvo

$$score = -LogKd$$
 (26)

L.5 Modelos Preditivos

Método	ID	Treino	Parâmetros
	FS	refined-set18B	$n_{\text{estimators}} = 500$
	CS	csar-nrc-hiq-set	$n_{\text{estimators}} = 500$
	FS+WS	refined-set18B	n estimators - 500
	1.94 44.9	+weak-set18	Π_{-} estimators – 500
Random Forest	CS+WS	csar-nrc-hiq-set	n estimators - 500
	Cotwo	+weak-set18	Π_{-} estimators – 500
	ESIDS	refined-set18B	n actimators - 500
	Готро	+csar-decoys-all-set11	Π_{-} estimators – 500
	CS+DS csar-nrc-hiq-set		n estimators – 500
	Cotdo	+csar-decoys-all-set11	n_cstimators = 500
		refined-set18B	
	FS+WS+DS	+weak-set18	$n_{\text{estimators}} = 500$
		+csar-decoys-all-set11	
		csar-nrc-hiq-set	
	CS+WS+DS	+weak-set18	n_{-} estimators = 500
		+csar-decoys-all-set11	
		refined-set18B	
		+csar-nrc-hiq-set	n estimators - 500
		+weak-set18	11_{CSUIII} 11_{CSUIII} 11_{CSUIII} 100
		+csar-decoys-all-set11	

Tabela 149: Experimento 12 - Configuração dos modelos preditivos.

L.6 Resultados

L.6.1 Scoring Power

Tabela 150: Experimento 12 - Desempenho das funções de escore no CASF-2016 no teste do *Scoring Power*.

scoring function	N	R	SD
FS+WS	285	0.826	1.23
FS	285	0.824	1.23
FS+CS+WS+DS	285	0.815	1.26
FS+WS+DS	285	0.814	1.26
CS+WS+DS	285	0.81	1.27
FS+DS	285	0.807	1.29
CS+DS	285	0.627	1.69
CS	285	0.625	1.7
CS+WS	285	0.598	1.74

wer. Adaptado de:	SU et	al. (2	.018).	
scoring function	Rank	N	R	SD
FS+WS	1	285	0.826	1.23
FS	2	285	0.824	1.23
Δ VinaRF20	3	285	0.816	1.26
FS+CS+WS+DS	4	285	0.815	1.26
FS+WS+DS	5	285	0.814	1.26
CS+WS+DS	6	285	0.81	1.27
FS+DS	7	285	0.807	1.29
X-Score	8	285	0.631	1.69
X-ScoreHS	9	285	0.629	1.69
CS+DS	10	285	0.627	1.69
Δ SAS	11	285	0.625	1.7
CS	12	285	0.625	1.7
X-ScoreHP	13	285	0.621	1.7
ASP@GOLD	14	282	0.617	1.71
ChemPLP@GOLD	15	281	0.614	1.72
X-ScoreHM	16	285	0.609	1.73
AutodockVina	17	285	0.604	1.73
DrugScore2018	18	285	0.602	1.74
CS+WS	19	285	0.598	1.74
DrugScoreCSD	20	285	0.596	1.75
ASE@MOE	21	285	0.591	1.75
ChemScore@SYBYL	22	285	0.59	1.76
PLP1@DS	23	285	0.581	1.77
ChemScore@GOLD	24	279	0.574	1.78
G-Score@SYBYL	25	284	0.572	1.79
Alpha-HB@MOE	26	285	0.569	1.79
PLP2@DS	27	285	0.563	1.8
Affinity-dG@MOE	28	285	0.552	1.81
LigScore2@DS	29	285	0.54	1.83
D-Score@SYBYL	30	284	0.531	1.84
LUDI2@DS	31	285	0.526	1.85
GlideScore-SP	32	258	0.513	1.89
LUDI3@DS	33	285	0.502	1.88
GBVI/WSA-dG@MOE	34	271	0.496	1.91
LUDI1@DS	35	284	0.494	1.88
GlideScore-XP	36	252	0.467	1.95
Jain@DS	37	279	0.457	1.89
LigScore1@DS	38	285	0.425	1.97
PMF@DS	39	282	0.422	1.97
GoldScore@GOLD	40	244	0.416	1.99
London-dG@MOE	41	285	0.405	1.99
PMF@SYBYL	42	279	0.262	2.09
PMF04@DS	43	263	0.212	2.11
L	1			

Tabela 151: Experimento 12 - Comparação com outras funcões de escore do CASF-2016no teste do Scoring Power. Adaptado de:SU et al. (2018).

L.6.2 Ranking Power

scoring function	SP	tau	PI
FS+WS	0.698	0.607	0.728
CS+WS+DS	0.696	0.618	0.718
FS+CS+WS+DS	0.696	0.611	0.72
FS+DS	0.696	0.611	0.718
FS+WS+DS	0.688	0.614	0.709
FS	0.684	0.604	0.717
CS+DS	0.595	0.523	0.629
CS	0.557	0.47	0.596
CS+WS	0.537	0.474	0.575

Tabela 152: Experimento 12 - Desempenho das funções de escore no CASF-2016 no teste do *Ranking Power*.

<i>ower</i> . Adaptado de:	e: SU et al. (2018).					
scoring function	Rank	SP	tau	PI		
Δ VinaRF20	1	0.75	0.685	0.760		
FS+WS	2	0.698	0.607	0.728		
CS+WS+DS	3	0.696	0.618	0.718		
FS+CS+WS+DS	4	0.696	0.611	0.72		
FS+DS	5	0.696	0.611	0.718		
FS+WS+DS	6	0.688	0.614	0.709		
FS	7	0.684	0.604	0.717		
ChemPLP@GOLD	8	0.633	0.537	0.657		
DrugScoreCSD	9	0.63	0.544	0.662		
LUDI2@DS	10	0.629	0.542	0.657		
LUDI1@DS	11	0.612	0.534	0.64		
LigScore2@DS	12	0.608	0.521	0.62		
DrugScore2018	13	0.607	0.53	0.637		
X-Score	14	0.604	0.529	0.638		
Affinity-dG@MOE	15	0.604	0.519	0.619		
X-ScoreHM	16	0.603	0.522	0.640		
LigScore1@DS	17	0.599	0.523	0.606		
CS+DS	18	0.595	0.523	0.629		
ChemScore@SYBYL	19	0.593	0.53	0.617		
London-dG@MOE	20	0.593	0.526	0.609		
G-Score@SYBYL	21	0.591	0.526	0.609		
PLP2@DS	22	0.589	0.512	0.617		
Δ SAS	23	0.588	0.498	0.612		
PLP1@DS	24	0.582	0.509	0.605		
D-Score@SYBYL	25	0.577	0.516	0.598		
X-ScoreHP	26	0.573	0.508	0.607		
CS	27	0.557	0.47	0.596		
ASP@GOLD	28	0.552	0.474	0.582		
X-ScoreHS	29	0.547	0.469	0.577		
CS+WS	30	0.537	0.474	0.575		
PMF@DS	31	0.537	0.47	0.558		
Alpha-HB@MOE	32	0.535	0.477	0.557		
LUDI3@DS	33	0.532	0.449	0.564		
AutodockVina	34	0.528	0.452	0.557		
ChemScore@GOLD	35	0.526	0.46	0.557		
Jain@DS	36	0.521	0.447	0.545		
GBVI/WSA-dG@MOE	37	0.489	0.421	0.504		
PMF04@DS	38	0.481	0.386	0.497		
PMF@SYBYL	39	0.449	0.379	0.478		
ASE@MOE	40	0.439	0.372	0.466		
GlideScore-SP	41	0.419	0.374	0.425		
GoldScore@GOLD	42	0.284	0.242	0.283		
GlideScore-XP	43	0.257	0.226	0.255		

Tabela 153: Experimento 12 - Comparação com outras funcões de escore do CASF-2016no teste do Ranking Power. Adaptado de:SU et al. (2018).

L.6.3 Docking Power

scoring function	TOP1	TOP2	TOP3
CS+DS	89.1	95.4	96.5
FS+CS+WS+DS	87.4	93.7	97.2
FS+WS+DS	86.3	92.6	96.5
CS+WS+DS	86.3	92.6	96.5
FS+DS	83.2	91.2	94.4
CS	71.2	80.0	82.8
CS+WS	70.2	80.4	85.3
FS+WS	61.1	66.7	71.6
FS	51.2	57.9	62.1

Tabela 154: Experimento 12 - Desempenho das funções de escore no CASF-2016 no teste do *Docking Power*.

				TOD
scoring function	Kank		10P2	10P3
Autodock Vina	1	90.2	95.8	97.2
CS+DS	2	89.1	95.4	96.5
ΔVinaRF20	3	89.1	94.4	96.5
GlideScore-SP	4	87.7	91.9	93.7
FS+CS+WS+DS	5	87.4	93.7	97.2
DrugScoreCSD	6	87.4	93.3	95.1
GBVI/WSA-dG@MOE	7	87.0	91.9	93.3
FS+WS+DS	8	86.3	92.6	96.5
CS+WS+DS	9	86.3	92.6	96.5
ChemPLP@GOLD	10	86.0	93.7	96.1
LigScore2@DS	11	85.6	93.3	96.5
GlideScore-XP	12	83.9	90.2	94.4
DrugScore2018	13	83.5	89.5	94.0
FS+DS	14	83.2	91.2	94.4
PLP1@DS	15	82.8	90.5	94.0
ASP@GOLD	16	81.1	88.4	93.0
ChemScore@GOLD	17	80.4	86.0	90.9
PLP2@DS	18	79.3	88.4	92.3
LigScore1@DS	19	76.8	86.0	89.5
GoldScore@GOLD	20	75.1	86.3	90.5
Alpha-HB@MOE	21	71.6	81.1	85.3
CS	22	71.2	80.0	82.8
CS+WS	23	70.2	80.4	85.3
X-ScoreHM	24	65.3	77.9	83.5
Affinity-dG@MOE	25	63.5	76.1	83.9
LUDI2@DS	26	63.5	75.1	80.4
X-Score	27	63.5	74.0	80.4
London-dG@MOE	28	63.2	78.2	83.9
LUDI1@DS	29	63.2	73.7	81.1
FS+WS	30	61.1	66.7	71.6
X-ScoreHS	31	59.6	72.3	78.6
ChemScore@SYBYL	32	57.9	68.8	77.2
X-ScoreHP	33	56.1	67.7	75.1
Jain@DS	34	55.8	67.4	75.8
LUDI3@DS	35	53.0	63.2	71.9
FS	36	51.2	57.9	62.1
ASE@MOE	37	50.5	60.7	67.0
PMF@SYBYL	38	47 7	57.9	65.3
PMF04@DS	30	46.3	54.0	59.6
G-Score@SVBVI	40	44.2	59.6	69.1
PMF@DS	/1	42.8	51.0	58.6
	41	30.2	11.9	51.6
D-Score@SVRVI	42	26.0	44.0	51.0
D-SCORE SIBIL	43	20.0	40.0	51.9

Tabela 155: Experimento 12 - Comparação com outras funcões de escore do CASF-2016no teste do Docking Power. Adaptado de: SU et al. (2018).

L.6.4 Docking Power (without native pose)

	TODI	TODA	TODA
scoring function	TOPI	TOP2	TOP3
CS+DS	85.3	91.9	93.7
FS+WS+DS	84.2	90.5	94.0
FS+CS+WS+DS	83.9	91.6	94.7
CS+WS+DS	83.5	90.2	94.0
FS+DS	81.1	88.4	91.9
CS	67.7	77.5	80.4
CS+WS	64.9	76.5	81.1
FS+WS	60.0	66.0	69.8
FS	48.1	55.1	60.4

Tabela 156: Experimento 12 - Desempenho das funções de escore no CASF-2016 no teste do *Docking Power (without native pose)*.

scoring function	Rank	TOP1	TOP2	TOP3
CS+DS	1	85.3	91.9	93.7
Δ VinaRF20	2	84.9	91.6	93.3
GlideScore-SP	3	84.6	90.5	92.6
AutodockVina	4	84.6	90.2	92.6
FS+WS+DS	5	84.2	90.5	94.0
FS+CS+WS+DS	6	83.9	91.6	94 7
CS+WS+DS	7	83.5	90.2	94.0
ChemPLP@GOLD	8	83.2	90.5	93.3
GBVI/WSA-dG@MOE	9	82.1	88.4	91.6
GlideScore-XP	10	81.8	89.5	93.0
FS+DS	11	81.1	88.4	91.9
PLP1@DS	12	81.1	88.4	91.6
LigScore2@DS	13	80.4	91.2	94.4
DrugScoreCSD	14	80.4	89.5	91.9
DrugScore2018	15	79.3	86.3	92.3
ChemScore@GOLD	16	79.3	85.6	90.2
ASP@GOLD	17	78.9	85.6	90.5
PLP2@DS	18	77.2	87.4	91.6
GoldScore@GOLD	19	74.7	86.3	90.5
LigScore1@DS	20	74.0	83.2	87.7
Alpha-HB@MOE	21	70.5	80.4	84.6
CS	22	67.7	77.5	80.4
X-ScoreHM	23	65.6	77.5	83.2
CS+WS	24	64.9	76.5	81.1
X-Score	25	63.5	73.3	79.6
LUDI2@DS	26	63.2	74.0	80.4
London-dG@MOE	27	62.1	77.2	83.5
Affinity-dG@MOE	28	62.1	75.1	81.8
LUDI1@DS	29	61.8	73.7	80.7
FS+WS	30	60.0	66.0	69.8
X-ScoreHS	31	59.3	70.9	77.5
ChemScore@SYBYL	32	57.2	68.4	76.5
X-ScoreHP	33	55.4	67.0	74.7
Jain@DS	34	55.1	67.4	75.8
LUDI3@DS	35	52.6	63.2	71.2
ASE@MOE	36	49.8	59.3	65.3
FS	37	48.1	55.1	60.4
PMF@SYBYL	38	47.7	56.5	63.9
PMF04@DS	39	44.6	52.6	58.2
G-Score@SYBYL	40	44.2	59.6	69.1
PMF@DS	41	42.1	51.2	57.5
Δ SAS	42	30.2	44.2	51.9
D-Score@SYBYL	43	26.0	40.0	51.9

Tabela 157: Experimento 12 - Comparação com outras funcões de escore do CASF-2016no teste do Docking Power (without native pose). Adaptado de: SU et al. (2018).

scoring power	TOP1	TOP5	TOP10	EF1	EF5	EF10
CS+DS	28.1	40.4	54.4	7.08	3.47	2.87
FS	22.8	28.1	47.4	6.9	2.29	1.86
CS+WS+DS	19.3	42.1	56.1	4.44	3.36	2.57
FS+WS	19.3	22.8	35.1	5.9	2.21	1.78
FS+WS+DS	17.5	42.1	54.4	4.66	2.97	2.56
FS+CS+WS+DS	17.5	40.4	56.1	5.01	3.42	2.64
CS	14.0	26.3	29.8	4.13	2.23	1.62
FS+DS	12.3	40.4	52.6	3.41	3.09	2.44
CS+WS	8.8	26.3	40.4	4.27	2.28	2.02

Tabela 158: Experimento 12 - Desempenho das funções de escore no CASF-2016 no teste do *Forward Screening Power*.

scoring_function	Rank	TOPI	TOP5	TOP10	EF1	EF5	EF10
Δ VinaRF20	1	42.1	49.1	54.4	11.73	4.43	3.1
GlideScore-SP	2	36.8	54.4	63.2	11.44	5.83	3.98
ChemPLP@GOLD	3	35.1	61.4	64.9	11.91	5.29	3.59
AutodockVina	4	29.8	40.4	50.9	7.7	4.01	2.87
ChemScore@GOLD	5	28.1	45.6	57.9	8.65	3.95	2.92
CS+DS	6	28.1	40.4	54.4	7.08	3.47	2.87
GBVI/WSA-dG@MOE	7	26.3	45.6	59.6	7.62	3.61	2.77
GlideScore-XP	8	26.3	45.6	52.6	8.83	4.75	3.51
LigScore2@DS	9	26.3	42.1	50.9	6.82	3.53	2.84
ASP@GOLD	10	22.8	49.1	68.4	6.98	3.95	3.1
LigScore1@DS	11	22.8	36.8	49.1	6.32	3.68	2.74
DrugScoreCSD	12	22.8	33.3	49.1	5.9	2.97	2.54
FS	13	22.8	28.1	47.4	6.9	2.29	1.86
Affinity-dG@MOE	14	19.3	43.9	50.9	5.07	2.77	2.26
CS+WS+DS	15	19.3	42.1	56.1	4.44	3.36	2.57
FS+WS	16	19.3	22.8	35.1	5.9	2.21	1.78
FS+WS+DS	17	17.5	42.1	54.4	4.66	2.97	2.56
FS+CS+WS+DS	18	17.5	40.4	56.1	5.01	3.42	2.64
GoldScore@GOLD	19	15.8	35.1	42.1	4.27	2.86	1.98
PLP1@DS	20	15.8	31.6	45.6	3.98	2.88	2.39
DrugScore2018	21	15.8	31.6	38.6	3.66	2.25	1.89
LUDI1@DS	22	14.0	29.8	42.1	3.1	2.14	1.81
PMF@DS	23	14.0	26.3	40.4	3.76	1.76	1.59
CS	24	14.0	26.3	29.8	4.13	2.23	1.62
PMF04@DS	25	14.0	19.3	33.3	3.17	1.68	1.75
FS+DS	26	12.3	40.4	52.6	3.41	3.09	2.44
LUDI2@DS	27	10.5	28.1	40.4	2.34	2.0	1.63
PLP2@DS	28	8.8	29.8	52.6	1.81	2.43	2.49
CS+WS	29	8.8	26.3	40.4	4.27	2.28	2.02
Alpha-HB@MOE	30	8.8	21.1	40.4	1.7	1.65	2.02
X-ScoreHM	31	8.8	19.3	31.6	3.21	1.39	1.31
London-dG@MOE	32	7.0	26.3	42.1	2.05	2.3	2.09
PMF@SYBYL	33	7.0	19.3	28.1	1.46	1.77	1.68
Jain@DS	34	7.0	15.8	33.3	1.35	1.31	1.56
X-Score	35	7.0	15.8	28.1	2.68	1.31	1.23
LUDI3@DS	36	7.0	14.0	33.3	1.85	1.15	1.4
ASE@MOE	37	7.0	12.3	28.1	1.44	1.11	1.28
D-Score@SYBYL	38	5.3	17.5	26.3	1.24	1.65	1.34
Δ SAS	39	5.3	14.0	24.6	1.76	1.12	1.15
X-ScoreHS	40	5.3	12.3	28.1	2.17	1.26	1.26
X-ScoreHP	41	3.5	17.5	29.8	1.79	1.54	1.13
G-Score@SYBYL	42	3.5	12.3	26.3	0.89	1.06	1.11
ChemScore@SYBYL	43	1.8	15.8	31.6	0.79	1.26	1.41

Tabela 159: Experimento 12 - Comparação com outras funcões de escore do CASF-2016 no teste do *Forward Screening Power*. Adaptado de: SU et al. (2018).

L.6.6 Reverse Screening Power

scoring function	TOP1	TOP5	TOP10
FS+CS+WS+DS	15.8	28.8	35.1
CS+WS+DS	15.4	27.0	35.4
FS+DS	15.1	25.6	35.4
CS+DS	14.7	23.2	33.7
FS+WS+DS	13.0	27.4	36.5
FS+WS	10.9	22.5	29.1
FS	9.8	19.6	26.7
CS+WS	9.1	13.3	21.1
CS	6.3	14.0	25.6

Tabela 160: Experimento 12 - Desempenho das funções de escore no CASF-2016 no teste do *Reverse Screening Power*.

Screening Power. A	creening Power. Adaptado de:			<u>II. (2018</u>
scoring function	Rank	TOP1	TOP5	TOP10
ChemPLP@GOLD	1	17.5	29.1	41.1
GlideScore-SP	2	16.5	27.0	37.5
FS+CS+WS+DS	3	15.8	28.8	35.1
CS+WS+DS	4	15.4	27.0	35.4
DrugScoreCSD	5	15.4	23.9	33.0
FS+DS	6	15.1	25.6	35.4
Δ VinaRF20	7	15.1	24.9	31.6
CS+DS	8	14.7	23.2	33.7
DrugScore2018	9	14.7	21.8	28.8
ChemScore@GOLD	10	14.4	27.7	39.6
GlideScore-XP	11	14.4	23.5	34.7
GoldScore@GOLD	12	14.0	26.0	34.0
AutodockVina	13	13.7	22.8	31.2
PLP2@DS	14	13.7	22.5	30.2
PLP1@DS	15	13.7	22.1	30.2
GBVI/WSA-dG@MOE	16	13.3	23.9	34.7
FS+WS+DS	17	13.0	27.4	36.5
LigScore1@DS	18	12.6	21.1	30.9
Alpha-HB@MOE	19	11.9	18.6	31.2
LigScore2@DS	20	11.2	17.5	29.5
ASP@GOLD	21	10.9	22.5	31.9
FS+WS	22	10.9	22.5	29.1
Affinity-dG@MOE	23	10.2	19.3	25.6
FS	24	9.8	19.6	26.7
CS+WS	25	9.1	13.3	21.1
LUDI1@DS	26	7.7	15.1	24.2
X-ScoreHS	27	7.0	13.3	18.2
X-ScoreHP	28	6.7	11.2	17.9
CS	29	6.3	14.0	25.6
LUDI2@DS	30	6.0	14.7	22.5
X-ScoreHM	31	6.0	14.4	23.2
ChemScore@SYBYL	32	6.0	12.3	19.6
Jain@DS	33	6.0	11.6	17.2
X-Score	34	5.6	12.3	19.3
London-dG@MOE	35	5.6	11.2	19.6
ASE@MOE	36	5.3	10.2	16.5
G-Score@SYBYL	37	3.9	11.2	16.8
LUDI3@DS	38	3.2	7.4	13.7
PMF@DS	39	2.8	8.1	12.6
ΔSAS	40	2.5	8.4	11.9
D-Score@SYBYL	41	2.1	8.4	14.4
PMF@SYBYL	42	2.1	8.1	12.6
PMF04@DS	43	1.8	8.1	12.6

Tabela 161: Experimento 12 - Comparação com outras funcões de escore do CASF-2016no teste do *Reverse Screening Power*. Adaptado de:SU et al. (2018).

M Experimento Nro. 13

M.1 Metodologia Aplicada

Figura 87: Experimento 13 - Metodologia Aplicada.

M.2 Conjuntos de Treinamento e Teste

Tabela 162: Experimento 13 - Conjuntos de Treinamento e Teste.

Conjunto	ID	Tamanho
	refined-set18B	4463
Trainamanta	weak-set18	467
Tremamento	csar-nrc-hiq-set	343
	csar-decoys-all-set11	3773
	core-set16	285
Teste	docking-set16	28500
	screening-set16	1624500

M.3 Descritores

ID	Tamanho
amino20	20
dssp34	34
padel92	92
rdkt2d147	147
rdkt3d11	11
sasa10	10
vina58	58

Tabela 163: I	Experimento	13 - 1	Descritores.
---------------	-------------	--------	--------------

M.4 Atributo Alvo

$$score = -LogKd$$
 (27)

M.5 Modelos Preditivos

Método	ID	Treino	Parâmetros
	FS	refined-set18B	$n_{\text{estimators}} = 500$
	CS	csar-nrc-hiq-set	$n_{\text{estimators}} = 500$
	FS+WS	refined-set18B	n estimators - 500
	1.01.44.0	+weak-set18	Π_{-} estimators – 500
Random Forest	CS+WS	csar-nrc-hiq-set	n estimators – 500
	COTWO	+weak-set18	n_cstimators = 500
	FSTDS	refined-set18B	n estimators - 500
	Готро	+csar-decoys-all-set11	n_cstimators = 500
		csar-nrc-hiq-set	n estimators – 500
	CSTDS	+csar-decoys-all-set11	
		refined-set18B	
	FS+WS+DS	+weak-set18	$n_{estimators} = 500$
		+csar-decoys-all-set11	
		csar-nrc-hiq-set	
	CS+WS+DS	+weak-set18	$n_{\text{-}}$ estimators = 500
		+csar-decoys-all-set11	
		refined-set18B	
	FSTCSTMSTDS	+csar-nrc-hiq-set	n estimators – 500
		+weak-set18	
		+csar-decoys-all-set11	

Tabela 164: Experimento 13 - Configuração dos modelos preditivos.

M.6 Resultados

M.6.1 Scoring Power

Tabela 165: Experimento 13 - Desempenho das funções de escore no CASF-2016 no teste do *Scoring Power*.

scoring function	N	R	SD
FS+WS	285	0.813	1.26
FS	285	0.805	1.29
FS+WS+DS	285	0.799	1.31
CS+WS+DS	285	0.797	1.31
FS+CS+WS+DS	285	0.795	1.32
FS+DS	285	0.785	1.34
CS	285	0.650	1.65
CS+DS	285	0.647	1.66
CS+WS	285	0.638	1.68

scoring function	Rank	Ň	R	SD
Δ VinaRF20	1	285	0.816	1.26
FS+WS	2	285	0.813	1.26
FS	3	285	0.805	1.29
FS+WS+DS	4	285	0.799	1.31
CS+WS+DS	5	285	0.797	1.31
FS+CS+WS+DS	6	285	0.795	1.32
FS+DS	7	285	0.785	1.34
CS	8	285	0.650	1.65
CS+DS	9	285	0.647	1.66
CS+WS	10	285	0.638	1.68
X-Score	11	285	0.631	1.69
X-ScoreHS	12	285	0.629	1.69
Δ SAS	13	285	0.625	1.7
X-ScoreHP	14	285	0.621	1.7
ASP@GOLD	15	282	0.617	1.71
ChemPLP@GOLD	16	281	0.614	1.72
X-ScoreHM	17	285	0.609	1.73
AutodockVina	18	285	0.604	1.73
DrugScore2018	19	285	0.602	1.74
DrugScoreCSD	20	285	0.596	1.75
ASE@MOE	21	285	0.591	1.75
ChemScore@SYBYL	22	285	0.59	1.76
PLP1@DS	23	285	0.581	1.77
ChemScore@GOLD	24	279	0.574	1.78
G-Score@SYBYL	25	284	0.572	1.79
Alpha-HB@MOE	26	285	0.569	1.79
PLP2@DS	27	285	0.563	1.8
Affinity-dG@MOE	28	285	0.552	1.81
LigScore2@DS	29	285	0.54	1.83
D-Score@SYBYL	30	284	0.531	1.84
LUDI2@DS	31	285	0.526	1.85
GlideScore-SP	32	258	0.513	1.89
LUDI3@DS	33	285	0.502	1.88
GBVI/WSA-dG@MOE	34	271	0.496	1.91
LUDI1@DS	35	284	0.494	1.88
GlideScore-XP	36	252	0.467	1.95
Jain@DS	37	279	0.457	1.89
LigScore1@DS	38	285	0.425	1.97
PMF@DS	39	282	0.422	1.97
GoldScore@GOLD	40	244	0.416	1.99
London-dG@MOE	41	285	0.405	1.99
PMF@SYBYL	42	279	0.262	2.09
PMF04@DS	43	263	0.212	2.11

Tabela 166: Experimento 13 - Comparação com outras funcões de escore do CASF-2016no teste do Scoring Power. Adaptado de: SU et al. (2018).

M.6.2 Ranking Power

scoring function	SP	tau	PI
FS+WS+DS	0.662	0.575	0.694
FS+CS+WS+DS	0.660	0.589	0.689
FS+WS	0.66	0.579	0.699
FS	0.654	0.593	0.695
FS+DS	0.644	0.572	0.674
CS+WS+DS	0.642	0.568	0.674
CS	0.605	0.532	0.629
CS+WS	0.595	0.519	0.629
CS+DS	0.582	0.512	0.613

Tabela 167: Experimento 13 - Desempenho das funções de escore no CASF-2016 no teste do *Ranking Power*.

<i>Power</i> . Adaptado de:		et al. (2	2018).	-
scoring_function	Rank	SP	tau	PI
Δ VinaRF20	1	0.75	0.685	0.760
FS+WS+DS	2	0.662	0.575	0.694
FS+CS+WS+DS	3	0.660	0.589	0.689
FS+WS	4	0.66	0.579	0.699
FS	5	0.654	0.593	0.695
FS+DS	6	0.644	0.572	0.674
CS+WS+DS	7	0.642	0.568	0.674
ChemPLP@GOLD	8	0.633	0.537	0.657
DrugScoreCSD	9	0.63	0.544	0.662
LUDI2@DS	10	0.629	0.542	0.657
LUDI1@DS	11	0.612	0.534	0.64
LigScore2@DS	12	0.608	0.521	0.62
DrugScore2018	13	0.607	0.53	0.637
CS	14	0.605	0.532	0.629
X-Score	15	0.604	0.529	0.638
Affinity-dG@MOE	16	0.604	0.519	0.619
X-ScoreHM	17	0.603	0.522	0.640
LigScore1@DS	18	0.599	0.523	0.606
CS+WS	19	0.595	0.519	0.629
ChemScore@SYBYL	20	0.593	0.53	0.617
London-dG@MOE	21	0.593	0.526	0.609
G-Score@SYBYL	22	0.591	0.526	0.609
PLP2@DS	23	0.589	0.512	0.617
ΔSAS	24	0.588	0.498	0.612
CS+DS	25	0.582	0.512	0.613
PLP1@DS	26	0.582	0.509	0.605
D-Score@SYBYL	27	0.577	0.516	0.598
X-ScoreHP	28	0.573	0.508	0.607
ASP@GOLD	29	0.552	0.474	0.582
X-ScoreHS	30	0.547	0.469	0.577
PMF@DS	31	0.537	0.47	0.558
Alpha-HB@MOE	32	0.535	0.477	0.557
LUDI3@DS	33	0.532	0.449	0.564
AutodockVina	34	0.528	0.452	0.557
ChemScore@GOLD	35	0.526	0.46	0.557
Jain@DS	36	0.521	0.447	0.545
GBVI/WSA-dG@MOE	37	0.489	0.421	0.504
PMF04@DS	38	0.481	0.386	0.497
PMF@SYBYL	39	0.449	0.379	0.478
ASE@MOE	40	0.439	0.372	0.466
GlideScore-SP	41	0.419	0.374	0.425
GoldScore@GOLD	42	0.284	0.242	0.283
GlideScore-XP	43	0.257	0.226	0.255
	1.5	0.207	0.220	

Tabela 168: Experimento 13 - Comparação com outras funcões de escore do CASF-2016no teste do Ranking Power. Adaptado de:SU et al. (2018).

M.6.3 Docking Power

scoring function	TOP1	TOP2	TOP3
CS+DS	80.4	87.4	93.0
FS+CS+WS+DS	73.0	81.8	86.3
CS+WS+DS	73.0	79.6	85.3
FS+WS+DS	71.6	82.5	86.7
FS+DS	69.1	79.3	86.7
CS+WS	47.4	59.6	66.0
FS	40.4	52.3	60.4
FS+WS	39.6	53.0	59.3
CS	21.1	37.5	47.7

Tabela 169: Experimento 13 - Desempenho das funções de escore no CASF-2016 no teste do *Docking Power*.

<i>Tower</i> . Adaptado de. 50 et al. (2018).					
scoring function	Rank	TOP1	TOP2	TOP3	
AutodockVina	1	90.2	95.8	97.2	
Δ VinaRF20	2	89.1	94.4	96.5	
GlideScore-SP	3	87.7	91.9	93.7	
DrugScoreCSD	4	87.4	93.3	95.1	
GBVI/WSA-dG@MOE	5	87.0	91.9	93.3	
ChemPLP@GOLD	6	86.0	93.7	96.1	
LigScore2@DS	7	85.6	93.3	96.5	
GlideScore-XP	8	83.9	90.2	94.4	
DrugScore2018	9	83.5	89.5	94.0	
PLP1@DS	10	82.8	90.5	94.0	
ASP@GOLD	11	81.1	88.4	93.0	
CS+DS	12	80.4	87.4	93.0	
ChemScore@GOLD	13	80.4	86.0	90.9	
PLP2@DS	14	79.3	88.4	92.3	
LigScore1@DS	15	76.8	86.0	89.5	
GoldScore@GOLD	16	75.1	86.3	90.5	
FS+CS+WS+DS	17	73.0	81.8	86.3	
CS+WS+DS	18	73.0	79.6	85.3	
FS+WS+DS	19	71.6	82.5	86.7	
Alpha-HB@MOE	20	71.6	81.1	85.3	
FS+DS	21	69.1	79.3	86.7	
X-ScoreHM	22	65.3	77.9	83.5	
Affinity-dG@MOE	23	63.5	76.1	83.9	
LUDI2@DS	24	63.5	75.1	80.4	
X-Score	25	63.5	74.0	80.4	
London-dG@MOE	26	63.2	78.2	83.9	
LUDI1@DS	27	63.2	73.7	81.1	
X-ScoreHS	28	59.6	72.3	78.6	
ChemScore@SYBYL	29	57.9	68.8	77.2	
X-ScoreHP	30	56.1	67.7	75.1	
Jain@DS	31	55.8	67.4	75.8	
LUDI3@DS	32	53.0	63.2	71.9	
ASE@MOE	33	50.5	60.7	67.0	
PMF@SYBYL	34	47.7	57.9	65.3	
CS+WS	35	47.4	59.6	66.0	
PMF04@DS	36	46.3	54.0	59.6	
G-Score@SVBVI	30	40.5	59.6	69.1	
PMF@DS	37	42.8	51.0	58.6	
FC	30	40.4	52.2	60.0	
FS+WS	40	30.6	52.5	50.2	
	40	39.0	44.6	51.5	
D Score@SVDVI	41	26.0	44.0	51.0	
D-SCORESIBIL	42	20.0	40.0	51.9 477	
L0	43	21.1	37.5	4/./	

Tabela 170: Experimento 13 - Comparação com outras funcões de escore do CASF-2016no teste do Docking Power. Adaptado de:SU et al. (2018).

M.6.4 Docking Power (without native pose)

scoring function	TOP1	TOP2	TOP3
CS+DS	78.2	86.7	91.6
FS+CS+WS+DS	71.6	81.1	84.9
CS+WS+DS	71.2	78.6	83.5
FS+WS+DS	69.8	81.8	86.0
FS+DS	68.1	78.9	86.0
CS+WS	45.3	58.2	64.9
FS	40.0	51.2	59.3
FS+WS	38.9	52.3	59.3
CS	21.1	37.5	47.7

Tabela 171: Experimento 13 - Desempenho das funções de escore no CASF-2016 no teste do *Docking Power (without native)*.

1 Ower (without huive). I duptudo de. 50				
scoring function	Rank	TOP1	TOP2	TOP3
Δ VinaRF20	1	84.9	91.6	93.3
GlideScore-SP	2	84.6	90.5	92.6
AutodockVina	3	84.6	90.2	92.6
ChemPLP@GOLD	4	83.2	90.5	93.3
GBVI/WSA-dG@MOE	5	82.1	88.4	91.6
GlideScore-XP	6	81.8	89.5	93.0
PLP1@DS	7	81.1	88.4	91.6
LigScore2@DS	8	80.4	91.2	94.4
DrugScoreCSD	9	80.4	89.5	91.9
DrugScore2018	10	79.3	86.3	92.3
ChemScore@GOLD	11	79.3	85.6	90.2
ASP@GOLD	12	78.9	85.6	90.5
CS+DS	13	78.2	86.7	91.6
PLP2@DS	14	77.2	87.4	91.6
GoldScore@GOLD	15	74.7	86.3	90.5
LigScore1@DS	16	74.0	83.2	87.7
FS+CS+WS+DS	17	71.6	81.1	84.9
CS+WS+DS	18	71.2	78.6	83.5
Alpha-HB@MOE	19	70.5	80.4	84.6
FS+WS+DS	20	69.8	81.8	86.0
FS+DS	21	68.1	78.9	86.0
X-ScoreHM	22	65.6	77.5	83.2
X-Score	23	63.5	73.3	79.6
LUDI2@DS	24	63.2	74.0	80.4
London-dG@MOE	25	62.1	77.2	83.5
Affinity-dG@MOE	26	62.1	75.1	81.8
LUDI1@DS	27	61.8	73.7	80.7
X-ScoreHS	28	59.3	70.9	77.5
ChemScore@SYBYL	29	57.2	68.4	76.5
X-ScoreHP	30	55.4	67.0	74.7
Jain@DS	31	55.1	67.4	75.8
LUDI3@DS	32	52.6	63.2	71.2
ASE@MOE	33	49.8	59.3	65.3
PMF@SYBYL	34	47.7	56.5	63.9
CS+WS	35	45.3	58.2	64.9
PMF04@DS	36	44.6	52.6	58.2
G-Score@SYBYL	37	44.2	59.6	69.1
PMF@DS	38	42.1	51.2	57.5
FS	39	40.0	51.2	59.3
FS+WS	40	38.9	52.3	59.3
ΔSAS	41	30.2	44.2	51.9
D-Score@SYBYL	42	26.0	40.0	51.9
CS	43	21.1	37.5	47.7

Tabela 172: Experimento 13 - Comparação com outras funcões de escore do CASF-2016no teste do Docking Power (without native). Adaptado de: SU et al. (2018).

M.6.5 Forward Screening Power

scoring function	TOP1	TOP5	TOP10	EF1	EF5	EF10
FS+WS+DS	15.8	31.6	43.9	4.4	2.14	2.01
FS+CS+WS+DS	15.8	31.6	43.9	4.32	2.42	1.93
FS+WS	15.8	26.3	36.8	4.49	2.19	1.72
FS	15.8	22.8	36.8	4.93	2.07	1.63
CS+WS+DS	14.0	33.3	42.1	4.8	2.37	1.92
FS+DS	12.3	29.8	43.9	4.2	2.53	1.86
CS+DS	8.8	28.1	40.4	3.25	2.25	1.8
CS	7.0	17.5	29.8	1.89	1.14	1.26
CS+WS	7.0	15.8	29.8	2.55	1.6	1.41

Tabela 173: Experimento 13 - Desempenho das funções de escore no CASF-2016 no teste do *Forward Screening Power*.

o Forward Screening Power. Adaptado de: SU et			t al. (2018).				
scoring function	Rank	TOP1	TOP5	TOP10	EF1	EF5	EF10
Δ VinaRF20	1	42.1	49.1	54.4	11.73	4.43	3.1
GlideScore-SP	2	36.8	54.4	63.2	11.44	5.83	3.98
ChemPLP@GOLD	3	35.1	61.4	64.9	11.91	5.29	3.59
AutodockVina	4	29.8	40.4	50.9	7.7	4.01	2.87
ChemScore@GOLD	5	28.1	45.6	57.9	8.65	3.95	2.92
GBVI/WSA-dG@MOE	6	26.3	45.6	59.6	7.62	3.61	2.77
GlideScore-XP	7	26.3	45.6	52.6	8.83	4.75	3.51
LigScore2@DS	8	26.3	42.1	50.9	6.82	3.53	2.84
ASP@GOLD	9	22.8	49.1	68.4	6.98	3.95	3.1
LigScore1@DS	10	22.8	36.8	49.1	6.32	3.68	2.74
DrugScoreCSD	11	22.8	33.3	49.1	5.9	2.97	2.54
Affinity-dG@MOE	12	19.3	43.9	50.9	5.07	2.77	2.26
GoldScore@GOLD	13	15.8	35.1	42.1	4.27	2.86	1.98
PLP1@DS	14	15.8	31.6	45.6	3.98	2.88	2.39
FS+WS+DS	15	15.8	31.6	43.9	4.4	2.14	2.01
FS+CS+WS+DS	16	15.8	31.6	43.9	4.32	2.42	1.93
DrugScore2018	17	15.8	31.6	38.6	3.66	2.25	1.89
FS+WS	18	15.8	26.3	36.8	4.49	2.19	1.72
FS	19	15.8	22.8	36.8	4.93	2.07	1.63
CS+WS+DS	20	14.0	33.3	42.1	4.8	2.37	1.92
LUDI1@DS	21	14.0	29.8	42.1	3.1	2.14	1.8
PMF@DS	22	14.0	26.3	40.4	3.76	1.76	1.59
PMF04@DS	23	14.0	19.3	33.3	3.17	1.68	1.75
FS+DS	24	12.3	29.8	43.9	4.2	2.53	1.86
LUDI2@DS	25	10.5	28.1	40.4	2.34	2.0	1.63
PLP2@DS	26	8.8	29.8	52.6	1.81	2.43	2.49
CS+DS	27	8.8	28.1	40.4	3.25	2.25	1.8
Alpha-HB@MOE	28	8.8	21.1	40.4	1.7	1.65	2.02
X-ScoreHM	29	8.8	19.3	31.6	3.21	1.39	1.3
London-dG@MOE	30	7.0	26.3	42.1	2.05	2.3	2.09
PMF@SYBYL	31	7.0	19.3	28.1	1.46	1.77	1.68
CS	32	7.0	17.5	29.8	1.89	1.14	1.20
Jain@DS	33	7.0	15.8	33.3	1.35	1.31	1.56
CS+WS	34	7.0	15.8	29.8	2.55	1.6	1.41
X-Score	35	7.0	15.8	28.1	2.68	1.31	1.23
LUDI3@DS	36	7.0	14.0	33.3	1.85	1.15	1.4
ASE@MOE	37	7.0	12.3	28.1	1.44	1.11	1.28
D-Score@SYBYL	38	5.3	17.5	26.3	1.24	1.65	1.34
ΔSAS	39	5.3	14.0	24.6	1.76	1.12	1.15
X-ScoreHS	40	5.3	12.3	28.1	2.17	1.26	1.26
X-ScoreHP	41	3.5	17.5	29.8	1.79	1.54	1.13
G-Score@SYBYL	42	3.5	12.3	26.3	0.89	1.06	1.11
ChemScore@SYBYL	43	1.8	15.8	31.6	0.79	1.26	1.41

Tabela 174: Experimento 13 - Comparação com outras funcões de escore do CASF-2016 no teste do *Forward Screening Power*. Adaptado de: SU et al. (2018).

M.6.6 Reverse Screening Power

scoring function	TOP1	TOP5	TOP10
FS+DS	13.3	22.5	26.3
FS+CS+WS+DS	13.3	21.4	27.0
FS+WS+DS	12.6	21.1	26.7
CS+WS+DS	12.3	22.5	26.7
CS+DS	11.2	19.3	27.7
FS	11.2	18.2	24.9
FS+WS	10.5	18.2	25.3
CS+WS	7.0	13.0	21.4
CS	3.5	8.4	19.6

Tabela 175: Experimento 13 - Desempenho das funções de escore no CASF-2016 no teste do *Reverse Screening Power*.

Screening Power. Adaptado de: SU et al. (201					
scoring function	Rank	TOP1	TOP5	TOP10	
ChemPLP@GOLD	1	17.5	29.1	41.1	
GlideScore-SP	2	16.5	27.0	37.5	
DrugScoreCSD	3	15.4	23.9	33.0	
Δ VinaRF20	4	15.1	24.9	31.6	
DrugScore2018	5	14.7	21.8	28.8	
ChemScore@GOLD	6	14.4	27.7	39.6	
GlideScore-XP	7	14.4	23.5	34.7	
GoldScore@GOLD	8	14.0	26.0	34.0	
AutodockVina	9	13.7	22.8	31.2	
PLP2@DS	10	13.7	22.5	30.2	
PLP1@DS	11	13.7	22.1	30.2	
GBVI/WSA-dG@MOE	12	13.3	23.9	34.7	
FS+DS	13	13.3	22.5	26.3	
FS+CS+WS+DS	14	13.3	21.4	27.0	
LigScore1@DS	15	12.6	21.1	30.9	
FS+WS+DS	16	12.6	21.1	26.7	
CS+WS+DS	17	12.3	22.5	26.7	
Alpha-HB@MOE	18	11.9	18.6	31.2	
CS+DS	19	11.2	19.3	27.7	
FS	20	11.2	18.2	24.9	
LigScore2@DS	21	11.2	17.5	29.5	
ASP@GOLD	22	10.9	22.5	31.9	
FS+WS	23	10.5	18.2	25.3	
Affinity-dG@MOE	24	10.2	19.3	25.6	
LUDI1@DS	25	7.7	15.1	24.2	
X-ScoreHS	26	7.0	13.3	18.2	
CS+WS	27	7.0	13.0	21.4	
X-ScoreHP	28	6.7	11.2	17.9	
LUDI2@DS	29	6.0	14.7	22.5	
X-ScoreHM	30	6.0	14.4	23.2	
ChemScore@SYBYL	31	6.0	12.3	19.6	
Jain@DS	32	6.0	11.6	17.2	
X-Score	33	5.6	12.3	19.3	
London-dG@MOE	34	5.6	11.2	19.6	
ASE@MOE	35	5.3	10.2	16.5	
G-Score@SYBYL	36	3.9	11.2	16.8	
CS	37	3.5	8.4	19.6	
LUDI3@DS	38	3.2	7.4	13.7	
PMF@DS	39	2.8	8.1	12.6	
Δ SAS	40	2.5	8.4	11.9	
D-Score@SYBYL	41	2.1	8.4	14.4	
PMF@SYBYL	42	2.1	8.1	12.6	
PMF04@DS	43	1.8	8.1	12.6	

Tabela 176: Experimento 13 - Comparação com outras funcões de escore do CASF-2016no teste do Reverse Screening Power. Adaptado de: SU et al. (2018).

N Experimento Nro. 14

N.1 Metodologia Aplicada

Figura 88: Experimento 14 - Metodologia Aplicada.

N.2 Conjuntos de Treinamento e Teste

Conjunto	ID	Tamanho
	refined-set18B	4463
Treinamento	weak-set18	467
	csar-nrc-hiq-set	343
	csar-decoys-all-set11	3773
	core-set16	285
Teste	docking-set16	28500
	screening-set16	1624500

N.3 Descritores

ID	Tamanho
amino20	20
dssp34	34
binana350	350
padel92	92
rdkt2d147	147
rdkt3d11	11
sasa10	10
vina58	58
vina-s1	1

Tabela 178: Experimento 14 - Descritores.

N.4 Atributo Alvo

$$score = -LogKd$$
 (28)

N.5 Seleção de Atributos

Tabela 179: Experimento 14 - Configuração da seleção de atributos.

Método	Parâmetros	Nro. Atributos
	repeats $= 10$	Index = $[50, 100, 150,$
LassoCV	$n_{splits} = 10$	200, 250, 300,
	$\text{test}_{\text{size}} = 0.1$	400, 500, 600, 723]

N.6 Modelos Preditivos

Método	ID	Treino	N Atributos	Parâmetros
Random Forest	lasso_50_FS+CS+WS+DS	refined-set18B+csar-nrc-hiq-set	50	n estimators - 500
		+weak-set18+csar-decoys-all-set11	30	$n_{\text{estimators}} = 500$
	lasso_100_FS+CS+WS+DS	refined-set18B+csar-nrc-hiq-set	100	$n_{\text{estimators}} = 500$
		+weak-set18+csar-decoys-all-set11	100	
	lasso_150_FS+CS+WS+DS	refined-set18B+csar-nrc-hiq-set	150	n estimators – 500
		+weak-set18+csar-decoys-all-set11	150	Π_{-} estimators – 500
	lasso_200_FS+CS+WS+DS	refined-set18B+csar-nrc-hiq-set	200	$n_{\text{estimators}} = 500$
		+weak-set18+csar-decoys-all-set11	200	
	lasso_250_FS+CS+WS+DS	refined-set18B+csar-nrc-hiq-set	250	$n_{\text{estimators}} = 500$
		+weak-set18+csar-decoys-all-set11		
	lasso_300_FS+CS+WS+DS	refined-set18B+csar-nrc-hiq-set	300	n estimators – 500
		+weak-set18+csar-decoys-all-set11		
	lasso_400_FS+CS+WS+DS	refined-set18B+csar-nrc-hiq-set	400	n estimators $= 500$
		+weak-set18+csar-decoys-all-set11	100	
	lasso_500_FS+CS+WS+DS	refined-set18B+csar-nrc-hiq-set	500	n estimators $= 500$
		+weak-set18+csar-decoys-all-set11	500	n_commutors = 500
	lasso_600_FS+CS+WS+DS	refined-set18B+csar-nrc-hiq-set	600	n estimators $= 500$
		+weak-set18+csar-decoys-all-set11		11_03tilliators = 300
	lasso_723_FS+CS+WS+DS	refined-set18B+csar-nrc-hiq-set	723	n estimators – 500
		+weak-set18+csar-decoys-all-set11	123	

Tabela 180: Experimento 14 - Configuração dos modelos preditivos.

N.7 Resultados

N.7.1 Scoring Power

scoring function	N	R	SD
lasso_723_FS+CS+WS+DS	285	0.81	1.28
lasso_200_FS+CS+WS+DS	285	0.809	1.28
lasso_600_FS+CS+WS+DS	285	0.807	1.28
lasso_400_FS+CS+WS+DS	285	0.804	1.29
lasso_500_FS+CS+WS+DS	285	0.802	1.3
lasso_250_FS+CS+WS+DS	285	0.802	1.3
lasso_300_FS+CS+WS+DS	285	0.802	1.3
lasso_150_FS+CS+WS+DS	285	0.795	1.32
lasso_100_FS+CS+WS+DS	285	0.79	1.33
lasso_50_FS+CS+WS+DS	285	0.775	1.37

 Tabela 181: Experimento 14 - Desempenho das funções de escore no CASF-2016 no teste do Scoring Power.

Figura 89: Experimento 14 - Desempenho das funções de escore no CASF-2016 no teste do *Scoring Power*.

<i>ower</i> . Adaptado de: SU et al. (2018).								
scoring function	Rank	N	R	SD				
Δ VinaRF20	1	285	0.816	1.26				
lasso_723_FS+CS+WS+DS	2	285	0.81	1.28				
lasso_200_FS+CS+WS+DS	3	285	0.809	1.28				
lasso_600_FS+CS+WS+DS	4	285	0.807	1.28				
lasso_400_FS+CS+WS+DS	5	285	0.804	1.29				
lasso_500_FS+CS+WS+DS	6	285	0.802	1.3				
lasso_250_FS+CS+WS+DS	7	285	0.802	1.3				
lasso_300_FS+CS+WS+DS	8	285	0.802	1.3				
lasso_150_FS+CS+WS+DS	9	285	0.795	1.32				
lasso_100_FS+CS+WS+DS	10	285	0.79	1.33				
lasso_50_FS+CS+WS+DS	11	285	0.775	1.37				
X-Score	12	285	0.631	1.69				
X-ScoreHS	13	285	0.629	1.69				
ΔSAS	14	285	0.625	1.7				
X-ScoreHP	15	285	0.621	1.7				
ASP@GOLD	16	282	0.617	1.71				
ChemPLP@GOLD	17	281	0.614	1.72				
X-ScoreHM	18	285	0.609	1.73				
AutodockVina	19	285	0.604	1.73				
DrugScore2018	20	285	0.602	1.74				
DrugScoreCSD	21	285	0.596	1.75				
ASE@MOE	22	285	0.591	1.75				
ChemScore@SYBYL	23	285	0.59	1.76				
PLP1@DS	24	285	0.581	1.77				
ChemScore@GOLD	25	279	0.574	1.78				
G-Score@SYBYL	26	284	0.572	1.79				
Alpha-HB@MOE	27	285	0.569	1.79				
PLP2@DS	28	285	0.563	1.8				
Affinity-dG@MOE	29	285	0.552	1.81				
LigScore2@DS	30	285	0.54	1.83				
D-Score@SYBYL	31	284	0.531	1.84				
LUDI2@DS	32	285	0.526	1.85				
GlideScore-SP	33	258	0.513	1.89				
LUDI3@DS	34	285	0.502	1.88				
GBVI/WSA-dG@MOE	35	271	0.496	1.91				
LUDI1@DS	36	284	0.494	1.88				
GlideScore-XP	37	252	0.467	1.95				
Jain@DS	38	279	0.457	1.89				
LigScore1@DS	39	285	0.425	1.97				
PMF@DS	40	282	0.422	1.97				
GoldScore@GOLD	41	244	0.416	1.99				
London-dG@MOE	42	285	0.405	1.99				
PMF@SYBYL	43	279	0.262	2.09				
PMF04@DS	44	263	0.212	2.11				

Tabela 182: Experimento 14 - Comparação com outras funcões de escore do CASF-2016no teste do Scoring Power. Adaptado de:SU et al. (2018).
N.7.2 Ranking Power

scoring function	SP	tau	PI
lasso_100_FS+CS+WS+DS	0.702	0.614	0.718
lasso_200_FS+CS+WS+DS	0.689	0.607	0.709
lasso_50_FS+CS+WS+DS	0.677	0.6	0.713
lasso_300_FS+CS+WS+DS	0.667	0.582	0.688
lasso_600_FS+CS+WS+DS	0.667	0.586	0.696
lasso_500_FS+CS+WS+DS	0.667	0.586	0.691
lasso_723_FS+CS+WS+DS	0.665	0.589	0.693
lasso_250_FS+CS+WS+DS	0.662	0.586	0.691
lasso_400_FS+CS+WS+DS	0.657	0.568	0.689
lasso_150_FS+CS+WS+DS	0.654	0.565	0.675

Tabela 183: Experimento 14 - Desempenho das funções de escore no CASF-2016 no teste do *Ranking Power*.

Figura 90: Experimento 14 - Desempenho das funções de escore no CASF-2016 no teste do *Ranking Power*.

Power. Adaptado de: 50 et al. (2018).				
scoring function	Rank	SP	tau	PI
Δ VinaRF20	1	0.75	0.685	0.760
lasso_100_FS+CS+WS+DS	2	0.702	0.614	0.718
lasso_200_FS+CS+WS+DS	3	0.689	0.607	0.709
lasso_50_FS+CS+WS+DS	4	0.677	0.6	0.713
lasso_300_FS+CS+WS+DS	5	0.667	0.582	0.688
lasso_600_FS+CS+WS+DS	6	0.667	0.586	0.696
lasso_500_FS+CS+WS+DS	7	0.667	0.586	0.691
lasso_723_FS+CS+WS+DS	8	0.665	0.589	0.693
lasso_250_FS+CS+WS+DS	9	0.662	0.586	0.691
lasso_400_FS+CS+WS+DS	10	0.657	0.568	0.689
lasso_150_FS+CS+WS+DS	11	0.654	0.565	0.675
ChemPLP@GOLD	12	0.633	0.537	0.657
DrugScoreCSD	13	0.63	0.544	0.662
LUDI2@DS	14	0.629	0.542	0.657
LUDI1@DS	15	0.612	0.534	0.64
LigScore2@DS	16	0.608	0.521	0.62
DrugScore2018	17	0.607	0.53	0.637
X-Score	18	0.604	0.529	0.638
Affinity-dG@MOE	19	0.604	0.519	0.619
X-ScoreHM	20	0.603	0.522	0.640
LigScore1@DS	21	0.599	0.523	0.606
ChemScore@SYBYL	22	0.593	0.53	0.617
London-dG@MOE	23	0.593	0.526	0.609
G-Score@SYBYL	24	0.591	0.526	0.609
PLP2@DS	25	0.589	0.512	0.617
Δ SAS	26	0.588	0.498	0.612
PLP1@DS	27	0.582	0.509	0.605
D-Score@SYBYL	28	0.577	0.516	0.598
X-ScoreHP	29	0.573	0.508	0.607
ASP@GOLD	30	0.552	0.474	0.582
X-ScoreHS	31	0.547	0.469	0.577
PMF@DS	32	0.537	0.47	0.558
Alpha-HB@MOE	33	0.535	0.477	0.557
LUDI3@DS	34	0.532	0.449	0.564
AutodockVina	35	0.528	0.452	0.557
ChemScore@GOLD	36	0.526	0.46	0.557
Jain@DS	37	0.521	0.447	0.545
GBVI/WSA-dG@MOE	38	0.489	0.421	0.504
PMF04@DS	39	0.481	0.386	0.497
PMF@SYBYL	40	0.449	0.379	0.478
ASE@MOE	41	0.439	0.372	0.466
GlideScore-SP	42	0.419	0.374	0.425
GoldScore@GOLD	43	0.284	0.242	0.283

44 0.257 0.226 0.255

GoldScore@GOLD GlideScore-XP

Tabela 184: Experimento 14 - Comparação com outras funcões de escore do CASF-2016no teste do Ranking Power. Adaptado de: SU et al. (2018).scoring functionRankSPtauPI $\Delta VinaRF20$ 10.750.6850.760lasso_100_FS+CS+WS+DS20.7020.6140.718

N.7.3 Docking Power

scoring power	TOP1	TOP2	TOP3
lasso_300_FS+CS+WS+DS	85.3	93.3	96.5
lasso_250_FS+CS+WS+DS	84.9	93.7	96.1
lasso_400_FS+CS+WS+DS	83.9	89.5	93.0
lasso_100_FS+CS+WS+DS	83.2	93.7	94.7
lasso_200_FS+CS+WS+DS	83.2	91.9	93.7
lasso_600_FS+CS+WS+DS	83.2	90.5	93.3
lasso_500_FS+CS+WS+DS	82.5	92.3	95.8
lasso_723_FS+CS+WS+DS	82.5	90.2	94.4
lasso_150_FS+CS+WS+DS	80.7	91.9	94.0
lasso_50_FS+CS+WS+DS	77.9	87.7	91.2

Tabela 185: Experimento 14 - Desempenho das funções de escore no CASF-2016 no teste do *Docking Power*.

Figura 91: Experimento 14 - Desempenho das funções de escore no CASF-2016 no teste do *Docking Power*.

s Tower. Adaptado de.	50 0	t al. (2)	<i>J</i> 1 0 <i>)</i> .	
scoring power	Rank	TOP1	TOP2	TOP3
AutodockVina	1	90.2	95.8	97.2
Δ VinaRF20	2	89.1	94.4	96.5
GlideScore-SP	3	87.7	91.9	93.7
DrugScoreCSD	4	87.4	93.3	95.1
GBVI/WSA-dG@MOE	5	87.0	91.9	93.3
ChemPLP@GOLD	6	86.0	93.7	96.1
LigScore2@DS	7	85.6	93.3	96.5
lasso_300_FS+CS+WS+DS	8	85.3	93.3	96.5
lasso_250_FS+CS+WS+DS	9	84.9	93.7	96.1
GlideScore-XP	10	83.9	90.2	94.4
lasso_400_FS+CS+WS+DS	11	83.9	89.5	93.0
DrugScore2018	12	83.5	89.5	94.0
lasso_100_FS+CS+WS+DS	13	83.2	93.7	94.7
lasso_200_FS+CS+WS+DS	14	83.2	91.9	93.7
lasso_600_FS+CS+WS+DS	15	83.2	90.5	93.3
PLP1@DS	16	82.8	90.5	94.0
lasso_500_FS+CS+WS+DS	17	82.5	92.3	95.8
lasso_723_FS+CS+WS+DS	18	82.5	90.2	94.4
ASP@GOLD	19	81.1	88.4	93.0
lasso_150_FS+CS+WS+DS	20	80.7	91.9	94.0
ChemScore@GOLD	21	80.4	86.0	90.9
PLP2@DS	22	79.3	88.4	92.3
lasso_50_FS+CS+WS+DS	23	77.9	87.7	91.2
LigScore1@DS	24	76.8	86.0	89.5
GoldScore@GOLD	25	75.1	86.3	90.5
Alpha-HB@MOE	26	71.6	81.1	85.3
X-ScoreHM	27	65.3	77.9	83.5
Affinity-dG@MOE	28	63.5	76.1	83.9
LUDI2@DS	29	63.5	75.1	80.4
X-Score	30	63.5	74.0	80.4
London-dG@MOE	31	63.2	78.2	83.9
LUDI1@DS	32	63.2	73.7	81.1
X-ScoreHS	33	59.6	72.3	78.6
ChemScore@SYBYL	34	57.9	68.8	77.2
X-ScoreHP	35	56.1	67.7	75.1
Jain@DS	36	55.8	67.4	75.8
LUDI3@DS	37	53.0	63.2	71.9
ASE@MOE	38	50.5	60.7	67.0
PMF@SYBYL	39	47.7	57.9	65.3
PMF04@DS	40	46.3	54.0	59.6
G-Score@SYBYL	41	44.2	59.6	69.1
PMF@DS	42	42.8	51.9	58.6
ΔSAS	43	30.2	44.6	51.6
D-Score@SYBYL	44	26.0	40.0	51.9
	1		1	

Tabela 186: Experimento 14 - Comparação com outras funcões de escore do CASF-2016 no teste do *Docking Power*. Adaptado de: SU et al. (2018).

N.7.4 Docking Power (without native pose)

scoring function	TOP1	TOP2	TOP3
lasso_300_FS+CS+WS+DS	83.9	91.6	93.7
lasso_250_FS+CS+WS+DS	83.5	92.6	94.4
lasso_600_FS+CS+WS+DS	82.5	89.5	91.2
lasso_200_FS+CS+WS+DS	81.8	90.9	93.0
lasso_400_FS+CS+WS+DS	81.4	88.4	91.6
lasso_500_FS+CS+WS+DS	81.4	90.9	94.0
lasso_723_FS+CS+WS+DS	80.4	89.5	92.6
lasso_100_FS+CS+WS+DS	80.0	91.2	92.6
lasso_150_FS+CS+WS+DS	78.6	91.2	93.3
lasso_50_FS+CS+WS+DS	75.4	85.6	89.5

Tabela 187: Experimento 14 - Desempenho das funções de escore no CASF-2016 no teste do *Docking Power (without native)*.

Figura 92: Experimento 14 - Desempenho das funções de escore no CASF-2016 no teste do *Docking Power (without native)*.

scoring function	Rank	TOP1	TOP2	TOP3
Δ VinaRF20	1	84.9	91.6	93.3
GlideScore-SP	2	84.6	90.5	92.6
AutodockVina	3	84.6	90.2	92.6
lasso_300_FS+CS+WS+DS	4	83.9	91.6	93.7
lasso_250_FS+CS+WS+DS	5	83.5	92.6	94.4
ChemPLP@GOLD	6	83.2	90.5	93.3
lasso_600_FS+CS+WS+DS	7	82.5	89.5	91.2
GBVI/WSA-dG@MOE	8	82.1	88.4	91.6
lasso_200_FS+CS+WS+DS	9	81.8	90.9	93.0
GlideScore-XP	10	81.8	89.5	93.0
lasso_500_FS+CS+WS+DS	11	81.4	90.9	94.0
lasso_400_FS+CS+WS+DS	12	81.4	88.4	91.6
PLP1@DS	13	81.1	88.4	91.6
LigScore2@DS	14	80.4	91.2	94.4
lasso_723_FS+CS+WS+DS	15	80.4	89.5	92.6
DrugScoreCSD	16	80.4	89.5	91.9
lasso_100_FS+CS+WS+DS	17	80.0	91.2	92.6
DrugScore2018	18	79.3	86.3	92.3
ChemScore@GOLD	19	79.3	85.6	90.2
ASP@GOLD	20	78.9	85.6	90.5
lasso_150_FS+CS+WS+DS	21	78.6	91.2	93.3
PLP2@DS	22	77.2	87.4	91.6
lasso_50_FS+CS+WS+DS	23	75.4	85.6	89.5
GoldScore@GOLD	24	74.7	86.3	90.5
LigScore1@DS	25	74.0	83.2	87.7
Alpha-HB@MOE	26	70.5	80.4	84.6
X-ScoreHM	27	65.6	77.5	83.2
X-Score	28	63.5	73.3	79.6
LUDI2@DS	29	63.2	74.0	80.4
London-dG@MOE	30	62.1	77.2	83.5
Affinity-dG@MOE	31	62.1	75.1	81.8
LUDI1@DS	32	61.8	73.7	80.7
X-ScoreHS	33	59.3	70.9	77.5
ChemScore@SYBYL	34	57.2	68.4	76.5
X-ScoreHP	35	55.4	67.0	74.7
Jain@DS	36	55.1	67.4	75.8
LUDI3@DS	37	52.6	63.2	71.2
ASE@MOE	38	49.8	59.3	65.3
PMF@SYBYL	39	47.7	56.5	63.9
PMF04@DS	40	44.6	52.6	58.2
G-Score@SYBYL	41	44.2	59.6	69.1
PMF@DS	42	42.1	51.2	57.5
ΔSAS	43	30.2	44.2	51.9
D-Score@SYBYL	44	26.0	40.0	51.9

Tabela 188: Experimento 14 - Comparação com outras funcões de escore do CASF-2016 no teste do *Docking Power (without native)*. Adaptado de: SU et al. (2018).

N.7.5 Forward Screening Power

scoring function	TOP1	TOP5	TOP10	EF1	EF5	EF10
lasso_100_FS+CS+WS+DS	28.1	49.1	63.2	8.57	3.85	2.89
lasso_150_FS+CS+WS+DS	26.3	49.1	59.6	7.45	4.03	3.11
lasso_200_FS+CS+WS+DS	22.8	47.4	56.1	6.71	3.93	2.84
lasso_50_FS+CS+WS+DS	22.8	42.1	52.6	7.1	3.46	2.51
lasso_250_FS+CS+WS+DS	22.8	42.1	52.6	6.77	3.39	2.57
lasso_500_FS+CS+WS+DS	19.3	42.1	54.4	5.21	3.49	2.69
lasso_600_FS+CS+WS+DS	19.3	42.1	49.1	5.08	3.21	2.47
lasso_400_FS+CS+WS+DS	17.5	40.4	54.4	4.95	3.35	2.67
lasso_300_FS+CS+WS+DS	17.5	40.4	50.9	5.63	3.44	2.66
lasso_723_FS+CS+WS+DS	15.8	40.4	52.6	4.58	3.39	2.63

Tabela 189: Experimento 14 - Desempenho das funções de escore no CASF-2016 no teste do *Forward Screening Power*.

Figura 93: Experimento 14 - Desempenho das funções de escore no CASF-2016 no teste do *Forward Screening Power*.

o Forwara Screening Fo	wer. I	Adapta	do de:	<u>50 et</u>	<u>al. (</u> 20	18).	
scoring function	Rank	TOP1	TOP5	TOP10	EF1	EF5	EF10
Δ VinaRF20	1	42.1	49.1	54.4	11.73	4.43	3.1
GlideScore-SP	2	36.8	54.4	63.2	11.44	5.83	3.98
ChemPLP@GOLD	3	35.1	61.4	64.9	11.91	5.29	3.59
AutodockVina	4	29.8	40.4	50.9	7.7	4.01	2.87
lasso_100_FS+CS+WS+DS	5	28.1	49.1	63.2	8.57	3.85	2.89
ChemScore@GOLD	6	28.1	45.6	57.9	8.65	3.95	2.92
lasso_150_FS+CS+WS+DS	7	26.3	49.1	59.6	7.45	4.03	3.11
GBVI/WSA-dG@MOE	8	26.3	45.6	59.6	7.62	3.61	2.77
GlideScore-XP	9	26.3	45.6	52.6	8.83	4.75	3.51
LigScore2@DS	10	26.3	42.1	50.9	6.82	3.53	2.84
ASP@GOLD	11	22.8	49.1	68.4	6.98	3.95	3.1
lasso_200_FS+CS+WS+DS	12	22.8	47.4	56.1	6.71	3.93	2.84
lasso_50_FS+CS+WS+DS	13	22.8	42.1	52.6	7.1	3.46	2.51
lasso_250_FS+CS+WS+DS	14	22.8	42.1	52.6	6.77	3.39	2.57
LigScore1@DS	15	22.8	36.8	49.1	6.32	3.68	2.74
DrugScoreCSD	16	22.8	33.3	49.1	5.9	2.97	2.54
Affinity-dG@MOE	17	19.3	43.9	50.9	5.07	2.77	2.2
lasso_500_FS+CS+WS+DS	18	19.3	42.1	54.4	5.21	3.49	2.69
lasso_600_FS+CS+WS+DS	19	19.3	42.1	49.1	5.08	3.21	2.4
lasso_400_FS+CS+WS+DS	20	17.5	40.4	54.4	4.95	3.35	2.6
lasso_300_FS+CS+WS+DS	21	17.5	40.4	50.9	5.63	3.44	2.60
lasso_723_FS+CS+WS+DS	22	15.8	40.4	52.6	4.58	3.39	2.63
GoldScore@GOLD	23	15.8	35.1	42.1	4.27	2.86	1.98
PLP1@DS	24	15.8	31.6	45.6	3.98	2.88	2.39
DrugScore2018	25	15.8	31.6	38.6	3.66	2.25	1.8
LUDI1@DS	26	14.0	29.8	42.1	3.1	2.14	1.8
PMF@DS	27	14.0	26.3	40.4	3.76	1.76	1.5
PMF04@DS	28	14.0	19.3	33.3	3.17	1.68	1.7
LUDI2@DS	29	10.5	28.1	40.4	2.34	2.0	1.6
PLP2@DS	30	8.8	29.8	52.6	1.81	2.43	2.4
Alpha-HB@MOE	31	8.8	21.1	40.4	1.7	1.65	2.0
X-ScoreHM	32	8.8	19.3	31.6	3.21	1.39	1.3
London-dG@MOE	33	7.0	26.3	42.1	2.05	2.3	2.0
PMF@SYBYL	34	7.0	19.3	28.1	1.46	1.77	1.6
Jain@DS	35	7.0	15.8	33.3	1.35	1.31	1.50
X-Score	36	7.0	15.8	28.1	2.68	1.31	1.2
LUDI3@DS	37	7.0	14.0	33.3	1.85	1.15	1 4
ASE@MOE	38	7.0	12.3	28.1	1.05	1.11	1 29
D-Score@SYBYL	39	53	17.5	26.1	1 24	1.65	1 34
ASAS	40	53	14.0	20.5	1.2	1.05	1.5
X-ScoreHS	41	5.3	123	21.0	2.17	1.12	1.1
X-ScoreHP	42	3.5	17.5	20.1	1 70	1.20	1.20
G-Score@SVBVI	43	3.5	123	29.8	0.80	1.04	1.1.
ChemScore@SVBVI	43	1.9	12.3	20.3	0.09	1.00	1.1
CHEMISCOLE®SIDIL	44	1.0	13.0	51.0	0.79	1.20	1.4

Tabela 190: Experimento 14 - Comparação com outras funcões de escore do CASF-2016no teste do *Forward Screening Power*. Adaptado de: SU et al. (2018).

N.7.6 Reverse Screening Power

scoring function	TOP1	TOP5	TOP10
lasso_250_FS+CS+WS+DS	20.4	28.4	36.8
lasso_500_FS+CS+WS+DS	20.0	29.8	34.7
lasso_400_FS+CS+WS+DS	20.0	28.1	35.1
lasso_200_FS+CS+WS+DS	18.6	30.5	39.3
lasso_300_FS+CS+WS+DS	18.6	29.5	36.1
lasso_600_FS+CS+WS+DS	18.6	28.1	36.8
lasso_723_FS+CS+WS+DS	18.6	27.4	34.4
lasso_100_FS+CS+WS+DS	17.2	26.7	36.8
lasso_150_FS+CS+WS+DS	15.8	28.1	38.9
lasso_50_FS+CS+WS+DS	11.6	20.4	29.1

Tabela 191: Experimento 14 - Desempenho das funções de escore no CASF-2016 no teste do *Reverse Screening Power*.

Figura 94: Experimento 14 - Desempenho das funções de escore no CASF-2016 no teste do *Reverse Screening Power*.

Screening Fower. Au	ipiauo	ue. s		. (2018)
scoring function	Rank	TOP1	TOP5	TOP10
lasso_250_FS+CS+WS+DS	1	20.4	28.4	36.8
lasso_500_FS+CS+WS+DS	2	20.0	29.8	34.7
lasso_400_FS+CS+WS+DS	3	20.0	28.1	35.1
lasso_200_FS+CS+WS+DS	4	18.6	30.5	39.3
lasso_300_FS+CS+WS+DS	5	18.6	29.5	36.1
lasso_600_FS+CS+WS+DS	6	18.6	28.1	36.8
lasso_723_FS+CS+WS+DS	7	18.6	27.4	34.4
ChemPLP@GOLD	8	17.5	29.1	41.1
lasso_100_FS+CS+WS+DS	9	17.2	26.7	36.8
GlideScore-SP	10	16.5	27.0	37.5
lasso_150_FS+CS+WS+DS	11	15.8	28.1	38.9
DrugScoreCSD	12	15.4	23.9	33.0
Δ VinaRF20	13	15.1	24.9	31.6
DrugScore2018	14	14.7	21.8	28.8
ChemScore@GOLD	15	14.4	27.7	39.6
GlideScore-XP	16	14.4	23.5	34.7
GoldScore@GOLD	17	14.0	26.0	34.0
AutodockVina	18	13.7	22.8	31.2
PLP2@DS	19	13.7	22.5	30.2
PLP1@DS	20	13.7	22.1	30.2
GBVI/WSA-dG@MOE	21	13.3	23.9	34.7
LigScore1@DS	22	12.6	21.1	30.9
Alpha-HB@MOE	23	11.9	18.6	31.2
lasso_50_FS+CS+WS+DS	24	11.6	20.4	29.1
LigScore2@DS	25	11.2	17.5	29.5
ASP@GOLD	26	10.9	22.5	31.9
Affinity-dG@MOE	27	10.2	19.3	25.6
LUDI1@DS	28	7.7	15.1	24.2
X-ScoreHS	29	7.0	13.3	18.2
X-ScoreHP	30	6.7	11.2	17.9
LUDI2@DS	31	6.0	14.7	22.5
X-ScoreHM	32	6.0	14.4	23.2
ChemScore@SYBYL	33	6.0	12.3	19.6
Jain@DS	34	6.0	11.6	17.2
X-Score	35	5.6	12.3	19.3
London-dG@MOE	36	5.6	11.2	19.6
ASE@MOE	37	5.3	10.2	16.5
G-Score@SYBYL	38	3.9	11.2	16.8
LUDI3@DS	39	3.2	7.4	13.7
PMF@DS	40	2.8	8.1	12.6
Δ SAS	41	2.5	8.4	11.9
D-Score@SYBYL	42	2.1	8.4	14.4
PMF@SYBYL	43	2.1	8.1	12.6
PMF04@DS	44	1.8	8.1	12.6

Tabela 192: Experimento 14 - Comparação com outras funcões de escore do CASF-2016no teste do *Reverse Screening Power*. Adaptado de: SU et al. (2018).

O Experimento Nro. 15

O.1 Metodologia Aplicada

Figura 95: Experimento 15 - Metodologia Aplicada.

O.2 Conjuntos de Treinamento e Teste

Tabela 193: Experimento 15 - Conjuntos de Treinamento e Teste.

Conjunto	ID	Tamanho
	refined-set18B	4463
Trainamento	weak-set18	467
ITemamento	csar-nrc-hiq-set	343
	csar-decoys-all-set11	3773
	core-set16	285
Teste	docking-set16	28500
	screening-set16	1624500

O.3 Descritores

ID	Tamanho
amino20	20
dssp34	34
binana350	350
padel92	92
rdkt2d147	147
rdkt3d11	11
sasa10	10
vina58	58
vina-s1	1

Tabela 194: Experimento 15 - Descritores.

O.4 Atributo Alvo

$$score = -LogKd$$
 (29)

O.5 Seleção de Atributos

Tabela 195: Experimento 15 - Configuração da seleção de atributos.

Método	Parâmetros	Nro. Atributos
	repeats $= 10$	
LassoCV	$n_{splits} = 10$	250
	$test_size = 0.1$	

300

O.6 Modelos Preditivos

Tabela 196: Experimento 15 - Configuração dos modelos preditivos.

Método	ID	Treino	max_depth (md)	n_estimators (ne)
		refined-set18B	Index = $[10, 20, 30,$	Index = $[100, 200, 300,$
Dandom Forest	$lasso_250_{md}_{ne}$	+csar-nrc-hiq-set	40, 50, 60,	400, 500, 600,
Kandoni Folest	_FS+CS+WS+DS	+weak-set18	70, 80, 90,	700, 800, 900,
		+csar-decoys-all-set11	100]	1000]

O.7 Resultados

O.7.1 Scoring Power

scoring_power	N	R	SD
lasso_250_80_900	285	0.805	1.29
lasso_250_70_300	285	0.802	1.3
lasso_250_50_500	285	0.802	1.3
lasso_250_20_400	285	0.802	1.3
lasso_250_90_1000	285	0.800	1.3
lasso_250_40_400	285	0.800	1.3
lasso_250_60_800	285	0.8	1.3
lasso_250_40_900	285	0.799	1.31
lasso_250_80_100	285	0.799	1.31
lasso_250_20_900	285	0.799	1.31

Tabela 197: Experimento 15 - Desempenho das funções de escore no CASF-2016 no teste do *Scoring Power* (Top 10).

Figura 96: Experimento 15 - Desempenho das funções de escore no CASF-2016 no teste do *Scoring Power*.

ver (Top 10). Adaptado de: SU et al.				
scoring function	Rank	Ν	R	SD
Δ VinaRF20	1	285	0.816	1.26
lasso_250_80_900	2	285	0.805	1.29
lasso_250_70_300	3	285	0.802	1.3
lasso_250_50_500	4	285	0.802	1.3
lasso_250_20_400	5	285	0.802	1.3
lasso_250_90_1000	6	285	0.8	1.3
lasso_250_40_400	7	285	0.8	1.3
lasso_250_60_800	8	285	0.8	1.3
lasso_250_40_900	9	285	0.799	1.31
lasso_250_80_100	10	285	0.799	1.31
lasso_250_20_900	11	285	0.799	1.31
X-Score	12	285	0.631	1.69
X-ScoreHS	13	285	0.629	1.69
Δ SAS	14	285	0.625	1.7
X-ScoreHP	15	285	0.621	1.7
ASP@GOLD	16	282	0.617	1.71
ChemPLP@GOLD	17	281	0.614	1.72
X-ScoreHM	18	285	0.609	1.73
AutodockVina	19	285	0.604	1.73
DrugScore2018	20	285	0.602	1.74
DrugScoreCSD	21	285	0.596	1.75
ASE@MOE	22	285	0.591	1.75
ChemScore@SYBYL	23	285	0.59	1.76
PLP1@DS	24	285	0.581	1.77
ChemScore@GOLD	25	279	0.574	1.78
G-Score@SYBYL	26	284	0.572	1.79
Alpha-HB@MOE	27	285	0.569	1.79
PLP2@DS	28	285	0.563	1.8
Affinity-dG@MOE	29	285	0.552	1.81
LigScore2@DS	30	285	0.54	1.83
D-Score@SYBYL	31	284	0.531	1.84
LUDI2@DS	32	285	0.526	1.85
GlideScore-SP	33	258	0.513	1.89
LUDI3@DS	34	285	0.502	1.88
GBVI/WSA-dG@MOE	35	271	0.496	1.91
LUDI1@DS	36	284	0.494	1.88
GlideScore-XP	37	252	0.467	1.95
Jain@DS	38	279	0.457	1.89
LigScore1@DS	39	285	0.425	1.97
PMF@DS	40	282	0.422	1.97
GoldScore@GOLD	41	244	0.416	1.99
London-dG@MOE	42	285	0.405	1.99
PMF@SYBYL	43	279	0.262	2.09
PMF04@DS	44	263	0.212	2.11

Tabela 198: Experimento 15 - Comparação com outras funcões de escore do CASF-2016no teste do Scoring Power (Top 10). Adaptado de: SU et al. (2018).

0.7.2 Ranking Power

scoring function	SP	tau	PI
lasso_250_80_100	0.698	0.621	0.722
lasso_250_50_500	0.672	0.593	0.697
lasso_250_40_400	0.672	0.589	0.693
lasso_250_20_400	0.665	0.582	0.69
lasso_250_60_800	0.665	0.579	0.69
lasso_250_40_900	0.6629	0.582	0.685
lasso_250_80_900	0.66	0.586	0.685
lasso_250_70_300	0.657	0.575	0.677
lasso_250_90_1000	0.655	0.575	0.680
lasso_250_20_900	0.655	0.565	0.677

Tabela 199: Experimento 15 - Desempenho das funções de escore no CASF-2016 no teste do *Ranking Power* (Top 10).

Figura 97: Experimento 15 - Desempenho das funções de escore no CASF-2016 no teste do *Ranking Power*.

ower (Top TO). Adaptado de: SU et			U et a	1. (201
scoring function	Rank	SP	tau	PI
Δ VinaRF20	1	0.75	0.685	0.760
lasso_250_80_100	2	0.698	0.621	0.722
lasso_250_50_500	3	0.672	0.593	0.697
lasso_250_40_400	4	0.672	0.589	0.693
lasso_250_20_400	5	0.665	0.582	0.69
lasso_250_60_800	6	0.665	0.579	0.69
lasso_250_40_900	7	0.662	0.582	0.685
lasso_250_80_900	8	0.66	0.586	0.685
lasso_250_70_300	9	0.657	0.575	0.677
lasso_250_90_1000	10	0.655	0.575	0.680
lasso_250_20_900	11	0.655	0.565	0.677
ChemPLP@GOLD	12	0.633	0.537	0.657
DrugScoreCSD	13	0.63	0.544	0.662
LUDI2@DS	14	0.629	0.542	0.657
LUDI1@DS	15	0.612	0.534	0.64
LigScore2@DS	16	0.608	0.521	0.62
DrugScore2018	17	0.607	0.53	0.637
X-Score	18	0.604	0.529	0.638
Affinity-dG@MOE	19	0.604	0.519	0.619
X-ScoreHM	20	0.603	0.522	0.640
LigScore1@DS	21	0.599	0.523	0.606
ChemScore@SYBYL	22	0.593	0.53	0.617
London-dG@MOE	23	0.593	0.526	0.609
G-Score@SYBYL	24	0.591	0.526	0.609
PLP2@DS	25	0.589	0.512	0.617
Δ SAS	26	0.588	0.498	0.612
PLP1@DS	27	0.582	0.509	0.605
D-Score@SYBYL	28	0.577	0.516	0.598
X-ScoreHP	29	0.573	0.508	0.607
ASP@GOLD	30	0.552	0.474	0.582
X-ScoreHS	31	0.547	0.469	0.577
PMF@DS	32	0.537	0.47	0.558
Alpha-HB@MOE	33	0.535	0.477	0.557
LUDI3@DS	34	0.532	0.449	0.564
AutodockVina	35	0.528	0.452	0.557
ChemScore@GOLD	36	0.526	0.46	0.557
Jain@DS	37	0.521	0.447	0.545
GBVI/WSA-dG@MOE	38	0.489	0.421	0.504
PMF04@DS	39	0.481	0.386	0.497
PMF@SYBYL	40	0.449	0.379	0.478
ASE@MOE	41	0.439	0.372	0.466
GlideScore-SP	42	0.419	0.374	0.425
GoldScore@GOLD	43	0.284	0.242	0.283
GlideScore-XP	44	0.257	0.226	0.255

Tabela 200: Experimento 15 - Comparação com outras funcões de escore do CASF-2016no teste do Ranking Power (Top 10). Adaptado de:SU et al. (2018).

0.7.3 Docking Power

scoring function	TOP1	TOP2	TOP3
lasso_250_40_900	86.7	92.6	96.5
lasso_250_60_800	86.3	93.0	96.8
lasso_250_90_1000	85.6	94.0	96.5
lasso_250_20_900	85.6	93.3	96.1
lasso_250_20_400	85.3	93.0	95.4
lasso_250_80_100	85.3	92.6	96.8
lasso_250_70_300	84.9	92.3	95.4
lasso_250_80_900	84.2	93.3	95.8
lasso_250_40_400	84.2	92.6	95.8
lasso_250_50_500	83.2	93.0	96.5

Tabela 201: Experimento 15 - Desempenho das funções de escore no CASF-2016 no teste do *Docking Power* (Top 10).

Figura 98: Experimento 15 - Desempenho das funções de escore no CASF-2016 no teste do *Docking Power*.

ower (10p 10). Au	Ponk			TOP2
Scoring function		10P1 00.2	10P2	10P3
Autodock vina	1	90.2	95.8	97.2
Δ VinakF20	2	89.1	94.4	96.5
GlideScore-SP	3	87.7	91.9	93.7
DrugScoreCSD	4	87.4	93.3	95.1
GBVI/WSA-dG@MOE	5	87.0	91.9	93.3
lasso_250_40_900	6	86.7	92.6	96.5
lasso_250_60_800	7	86.3	93.0	96.8
ChemPLP@GOLD	8	86.0	93.7	96.1
lasso_250_90_1000	9	85.6	94.0	96.5
LigScore2@DS	10	85.6	93.3	96.5
lasso_250_20_900	11	85.6	93.3	96.1
lasso_250_20_400	12	85.3	93.0	95.4
lasso_250_80_100	13	85.3	92.6	96.8
lasso_250_70_300	14	84.9	92.3	95.4
lasso_250_80_900	15	84.2	93.3	95.8
lasso_250_40_400	16	84.2	92.6	95.8
GlideScore-XP	17	83.9	90.2	94.4
DrugScore2018	18	83.5	89.5	94.0
lasso_250_50_500	19	83.2	93.0	96.5
PLP1@DS	20	82.8	90.5	94.0
ASP@GOLD	21	81.1	88.4	93.0
ChemScore@GOLD	22	80.4	86.0	90.9
PLP2@DS	23	79.3	88.4	92.3
LigScore1@DS	24	76.8	86.0	89.5
GoldScore@GOLD	25	75.1	86.3	90.5
Alpha-HB@MOE	26	71.6	81.1	85.3
X-ScoreHM	27	65.3	77.9	83.5
Affinity-dG@MOE	28	63.5	76.1	83.9
LUDI2@DS	29	63.5	75.1	80.4
X-Score	30	63.5	74.0	80.4
London-dG@MOE	31	63.2	78.2	83.9
LUDI1@DS	32	63.2	73.7	81.1
X-ScoreHS	33	59.6	72.3	78.6
ChemScore@SYBYL	34	57.9	68.8	77.2
X-ScoreHP	35	56.1	67.7	75.1
Jain@DS	36	55.8	67.4	75.8
LUDI3@DS	37	53.0	63.2	71.9
ASE@MOE	38	50.5	60.7	67.0
PMF@SYBYL	39	47.7	57.9	65.3
PMF04@DS	40	46.3	54.0	59.6
G-Score@SYBYL	41	44.2	59.6	69.1
PMF@DS	42	42.8	51.9	58.6
ΔSAS	43	30.2	44.6	51.6
D-Score@SYBYL	44	26.0	40.0	51.9

Tabela 202: Experimento 15 - Comparação com outras funcões de escore do CASF-2016no teste do *Docking Power* (Top 10). Adaptado de: SU et al. (2018).

0.7.4 Docking Power (without native pose)

scoring function	TOP1	TOP2	TOP3
lasso_250_60_800	84.9	91.6	94.7
lasso_250_20_400	84.2	91.2	94.0
lasso_250_90_1000	83.9	92.3	94.4
lasso_250_40_900	83.5	90.5	94.7
lasso_250_80_100	83.5	91.2	95.4
lasso_250_80_900	83.2	91.2	94.4
lasso_250_70_300	83.2	89.8	93.3
lasso_250_20_900	83.2	91.6	94.7
lasso_250_40_400	82.8	90.5	93.7
lasso_250_50_500	82.5	91.2	94.0

Tabela 203: Experimento 15 - Desempenho das funções de escore no CASF-2016 no teste do *Docking Power* (Top 10 without native pose).

Figura 99: Experimento 15 - Desempenho das funções de escore no CASF-2016 no teste do *Docking Power (without native pose)*.

ower (10p 10 witho	ut muti	re pos	c). Tuu	ipiddo
scoring function	Rank	TOP1	TOP2	TOP3
lasso_250_60_800	1	84.9	91.6	94.7
Δ VinaRF20	2	84.9	91.6	93.3
GlideScore-SP	3	84.6	90.5	92.6
AutodockVina	4	84.6	90.2	92.6
lasso_250_20_400	5	84.2	91.2	94.0
lasso_250_90_1000	6	83.9	92.3	94.4
lasso_250_80_100	7	83.5	91.2	95.4
lasso_250_40_900	8	83.5	90.5	94.7
lasso_250_20_900	9	83.2	91.6	94.7
lasso_250_80_900	10	83.2	91.2	94.4
ChemPLP@GOLD	11	83.2	90.5	93.3
lasso_250_70_300	12	83.2	89.8	93.3
lasso_250_40_400	13	82.8	90.5	93.7
lasso_250_50_500	14	82.5	91.2	94.0
GBVI/WSA-dG@MOE	15	82.1	88.4	91.6
GlideScore-XP	16	81.8	89.5	93.0
PLP1@DS	17	81.1	88.4	91.6
LigScore2@DS	18	80.4	91.2	94.4
DrugScoreCSD	19	80.4	89.5	91.9
DrugScore2018	20	79.3	86.3	92.3
ChemScore@GOLD	21	79.3	85.6	90.2
ASP@GOLD	22	78.9	85.6	90.5
PLP2@DS	23	77.2	87.4	91.6
GoldScore@GOLD	24	74.7	86.3	90.5
LigScore1@DS	25	74.0	83.2	87.7
Alpha-HB@MOE	26	70.5	80.4	84.6
X-ScoreHM	27	65.6	77.5	83.2
X-Score	28	63.5	73.3	79.6
LUDI2@DS	29	63.2	74.0	80.4
London-dG@MOE	30	62.1	77.2	83.5
Affinity-dG@MOE	31	62.1	75.1	81.8
LUDI1@DS	32	61.8	73.7	80.7
X-ScoreHS	33	59.3	70.9	77.5
ChemScore@SYBYL	34	57.2	68.4	76.5
X-ScoreHP	35	55.4	67.0	74.7
Jain@DS	36	55.1	67.4	75.8
LUDI3@DS	37	52.6	63.2	71.2
ASE@MOE	38	49.8	59.3	65.3
PMF@SYBYL	39	47.7	56.5	63.9
PMF04@DS	40	44.6	52.6	58.2
G-Score@SYBYL	41	44.2	59.6	69.1
PMF@DS	42	42.1	51.2	57.5
ΔSAS	43	30.2	44.2	51.9
D-Score@SYBYL	44	26.0	40.0	51.9

Tabela 204: Experimento 15 - Comparação com outras funcões de escore do CASF-2016no teste do Docking Power (Top 10 without native pose). Adaptado de:SU et al. (2018).

scoring function	TOP1	TOP5	TOP10	EF1	EF5	EF10
lasso_250_80_900	22.8	45.6	50.9	6.72	3.53	2.63
lasso_250_40_400	22.8	45.6	50.9	6.39	3.7	2.57
lasso_250_50_500	22.8	45.6	50.9	6.04	3.54	2.62
lasso_250_20_900	22.8	43.9	59.6	6.2	3.44	2.7
lasso_250_80_100	22.8	42.1	50.9	5.71	3.36	2.45
lasso_250_70_300	22.8	40.4	56.1	6.33	3.21	2.64
lasso_250_90_1000	21.1	43.9	54.4	6.2	3.35	2.61
lasso_250_40_900	21.1	43.9	52.6	6.18	3.59	2.44
lasso_250_20_400	21.1	42.1	54.4	5.75	3.21	2.58
lasso_250_60_800	19.3	43.9	50.9	5.65	3.46	2.44

Tabela 205: Experimento 15 - Desempenho das funções de escore no CASF-2016 no teste do *Forward Screening Power* (Top 10).

Figura 100: Experimento 15 - Desempenho das funções de escore no CASF-2016 no teste do *Forward Screening Power*.

Forward Screening I	Power	(Top 1	0). Ad	aptado (de: S	U et	al. (20
scoring function	Rank	TOP1	TOP5	TOP10	EF1	EF5	EF10
Δ VinaRF20	1	42.1	49.1	54.4	11.73	4.43	3.1
GlideScore-SP	2	36.8	54.4	63.2	11.44	5.83	3.98
ChemPLP@GOLD	3	35.1	61.4	64.9	11.91	5.29	3.59
AutodockVina	4	29.8	40.4	50.9	7.7	4.01	2.87
ChemScore@GOLD	5	28.1	45.6	57.9	8.65	3.95	2.92
GBVI/WSA-dG@MOE	6	26.3	45.6	59.6	7.62	3.61	2.77
GlideScore-XP	7	26.3	45.6	52.6	8.83	4.75	3.51
LigScore2@DS	8	26.3	42.1	50.9	6.82	3.53	2.84
ASP@GOLD	9	22.8	49.1	68.4	6.98	3.95	3.1
lasso_250_80_900	10	22.8	45.6	50.9	6.72	3.53	2.63
lasso_250_40_400	11	22.8	45.6	50.9	6.39	3.7	2.57
lasso_250_50_500	12	22.8	45.6	50.9	6.04	3.54	2.62
lasso_250_20_900	13	22.8	43.9	59.6	6.2	3.44	2.7
lasso_250_80_100	14	22.8	42.1	50.9	5.71	3.36	2.45
lasso_250_70_300	15	22.8	40.4	56.1	6.33	3.21	2.64
LigScore1@DS	16	22.8	36.8	49.1	6.32	3.68	2.74
DrugScoreCSD	17	22.8	33.3	49.1	5.9	2.97	2.54
lasso_250_90_1000	18	21.1	43.9	54.4	6.2	3.35	2.61
lasso_250_40_900	19	21.1	43.9	52.6	6.18	3.59	2.44
lasso_250_20_400	20	21.1	42.1	54.4	5.75	3.21	2.58
lasso_250_60_800	21	19.3	43.9	50.9	5.65	3.46	2.44
Affinity-dG@MOE	22	19.3	43.9	50.9	5.07	2.77	2.26
GoldScore@GOLD	23	15.8	35.1	42.1	4.27	2.86	1.98
PLP1@DS	24	15.8	31.6	45.6	3.98	2.88	2.39
DrugScore2018	25	15.8	31.6	38.6	3.66	2.25	1.89
LUDI1@DS	26	14.0	29.8	42.1	3.1	2.14	1.81
PMF@DS	27	14.0	26.3	40.4	3.76	1.76	1.59
PMF04@DS	28	14.0	19.3	33.3	3.17	1.68	1.75
LUDI2@DS	29	10.5	28.1	40.4	2.34	2.0	1.63
PLP2@DS	30	8.8	29.8	52.6	1.81	2.43	2.49
Alpha-HB@MOE	31	8.8	21.1	40.4	1.7	1.65	2.02
X-ScoreHM	32	8.8	19.3	31.6	3.21	1.39	1.31
London-dG@MOE	33	7.0	26.3	42.1	2.05	2.3	2.09
PMF@SYBYL	34	7.0	19.3	28.1	1.46	1.77	1.68
Jain@DS	35	7.0	15.8	33.3	1.35	1.31	1.56
X-Score	36	7.0	15.8	28.1	2.68	1.31	1.23
LUDI3@DS	37	7.0	14.0	33.3	1.85	1.15	1.4
ASE@MOE	38	7.0	12.3	28.1	1.44	1.11	1.28
D-Score@SYBYL	39	5.3	17.5	26.3	1.24	1.65	1.34
ΔSAS	40	5.3	14.0	24.6	1.76	1.12	1.15
X-ScoreHS	41	5.3	12.3	28.1	2.17	1.26	1.26
X-ScoreHP	42	3.5	17.5	29.8	1.79	1.54	1.13
G-Score@SYBYL	43	3.5	12.3	26.3	0.89	1.06	1.11
ChemScore@SYBYL	44	1.8	15.8	31.6	0.79	1.26	1.41
	· · ·	1		1 2 2 1 0			

Tabela 206: Experimento 15 - Comparação com outras funcões de escore do CASF-2016 no teste do *Forward Screening Power* (Top 10). Adaptado de: SU et al. (2018).

0.7.6 Reverse Screening Power

scoring function	TOP1	TOP5	TOP10
lasso_250_80_900	21.1	30.2	35.8
lasso_250_60_800	21.1	29.5	34.4
lasso_250_70_300	20.7	30.2	35.8
lasso_250_40_900	20.7	29.5	35.1
lasso_250_90_1000	20.7	29.5	34.7
lasso_250_50_500	20.4	29.5	34.4
lasso_250_20_400	20.4	28.1	34.4
lasso_250_20_900	20.0	29.1	37.5
lasso_250_40_400	19.6	28.4	36.1
lasso_250_80_100	16.8	28.8	35.1

Tabela 207: Experimento 15 - Desempenho das funções de escore no CASF-2016 no teste do *Reverse Screening Power* (Top 10).

Figura 101: Experimento 15 - Desempenho das funções de escore no CASF-2016 no teste do *Reverse Screening Power*.

	<u>p 10).</u>	Thap		
scoring function	Rank	TOP1	TOP5	TOP10
lasso_250_80_900	1	21.1	30.2	35.8
lasso_250_60_800	2	21.1	29.5	34.4
lasso_250_70_300	3	20.7	30.2	35.8
lasso_250_40_900	4	20.7	29.5	35.1
lasso_250_90_1000	5	20.7	29.5	34.7
lasso_250_50_500	6	20.4	29.5	34.4
lasso_250_20_400	7	20.4	28.1	34.4
lasso_250_20_900	8	20.0	29.1	37.5
lasso_250_40_400	9	19.6	28.4	36.1
ChemPLP@GOLD	10	17.5	29.1	41.1
lasso_250_80_100	11	16.8	28.8	35.1
GlideScore-SP	12	16.5	27.0	37.5
DrugScoreCSD	13	15.4	23.9	33.0
Δ VinaRF20	14	15.1	24.9	31.6
DrugScore2018	15	14.7	21.8	28.8
ChemScore@GOLD	16	14.4	27.7	39.6
GlideScore-XP	17	14.4	23.5	34.7
GoldScore@GOLD	18	14.0	26.0	34.0
AutodockVina	19	13.7	22.8	31.2
PLP2@DS	20	13.7	22.5	30.2
PLP1@DS	21	13.7	22.1	30.2
GBVI/WSA-dG@MOE	22	13.3	23.9	34.7
LigScore1@DS	23	12.6	21.1	30.9
Alpha-HB@MOE	24	11.9	18.6	31.2
LigScore2@DS	25	11.2	17.5	29.5
ASP@GOLD	26	10.9	22.5	31.9
Affinity-dG@MOE	27	10.2	19.3	25.6
LUDI1@DS	28	7.7	15.1	24.2
X-ScoreHS	29	7.0	13.3	18.2
X-ScoreHP	30	6.7	11.2	17.9
LUDI2@DS	31	6.0	14.7	22.5
X-ScoreHM	32	6.0	14.4	23.2
ChemScore@SYBYL	33	6.0	12.3	19.6
Jain@DS	34	6.0	11.6	17.2
X-Score	35	5.6	12.3	19.3
London-dG@MOE	36	5.6	11.2	19.6
ASE@MOE	37	5.3	10.2	16.5
G-Score@SYBYL	38	3.9	11.2	16.8
LUDI3@DS	39	3.2	7.4	13.7
PMF@DS	40	2.8	8.1	12.6
ΔSAS	41	2.5	8.4	11.9
D-Score@SYBYL	42	2.1	8.4	14.4
PMF@SYBYL	43	2.1	8.1	12.6
PMF04@DS	44	1.8	8.1	12.6

Tabela 208: Experimento 15 - Comparação com outras funcões de escore do CASF-2016 no teste do *Reverse Screening Power* (Top 10). Adaptado de: SU et al. (2018).

P Experimento Nro. 16

P.1 Metodologia Aplicada

Figura 102: Experimento 16 - Metodologia Aplicada.

P.2 Conjuntos de Treinamento e Teste

Tabela 209: Experimento 16 - Conjuntos de Treinamento e Teste.

Conjunto	ID	Tamanho
	refined-set18B	4463
Trainamento	weak-set18	467
Tremamento	csar-nrc-hiq-set	343
	csar-decoys-all-set11	3773
	core-set16	285
Teste	docking-set16	28500
	screening-set16	1624500

P.3 Descritores

ID	Tamanho
amino20	20
dssp34	34
binana350	350
padel92	92
rdkt2d147	147
rdkt3d11	11
sasa10	10
vina58	58
vina-s1	1

Tabela 210: Experimento 16 - Descritores.

P.4 Atributo Alvo

$$score = -LogKd$$
 (30)

P.5 Seleção de Atributos

Tabela 211: Experimento 16 - Configuração da seleção de atributos.

Método	Parâmetros	Nro. Atributos
	repeats $= 10$	
LassoCV	$n_{splits} = 10$	250
	$\text{test_size} = 0.1$	

P.6 Modelo Preditivo

Tabela 212: Experimento 16 - Configuração do modelo preditivo.

Método	ID	Treino	Parâmetros	Nro. Iterações
Random Forest	experiment_250	refined-set18B +csar-nrc-hiq-set +weak-set18 +csar-decoys-all-set11	max_depth: 40 n_estimators: 900	10

P.7 Resultados

P.7.1 Scoring Power

scoring_function	Rank	N	R	SD
Δ VinaRF20	1	285	0.816	1.26
experiment_250	2	285	0.8	1.302
X-Score	3	285	0.631	1.69
X-ScoreHS	4	285	0.629	1.69
Δ SAS	5	285	0.625	1.7
X-ScoreHP	6	285	0.621	1.7
ASP@GOLD	7	282	0.617	1.71
ChemPLP@GOLD	8	281	0.614	1.72
X-ScoreHM	9	285	0.609	1.73
AutodockVina	10	285	0.604	1.73
DrugScore2018	11	285	0.602	1.74
DrugScoreCSD	12	285	0.596	1.75
ASE@MOE	13	285	0.591	1.75
ChemScore@SYBYL	14	285	0.59	1.76
PLP1@DS	15	285	0.581	1.77
ChemScore@GOLD	16	279	0.574	1.78
G-Score@SYBYL	17	284	0.572	1.79
Alpha-HB@MOE	18	285	0.569	1.79
PLP2@DS	19	285	0.563	1.8
Affinity-dG@MOE	20	285	0.552	1.81
LigScore2@DS	21	285	0.54	1.83
D-Score@SYBYL	22	284	0.531	1.84
LUDI2@DS	23	285	0.526	1.85
GlideScore-SP	24	258	0.513	1.89
LUDI3@DS	25	285	0.502	1.88
GBVI/WSA-dG@MOE	26	271	0.496	1.91
LUDI1@DS	27	284	0.494	1.88
GlideScore-XP	28	252	0.467	1.95
Jain@DS	29	279	0.457	1.89
LigScore1@DS	30	285	0.425	1.97
PMF@DS	31	282	0.422	1.97
GoldScore@GOLD	32	244	0.416	1.99
London-dG@MOE	33	285	0.405	1.99
PMF@SYBYL	34	279	0.262	2.09
PMF04@DS	35	263	0.212	2.11

Tabela 213: Experimento 16 - Comparação com outras funcões de escore do CASF-2016no teste do Scoring Power. Adaptado de:SU et al. (2018).

ΔVinaRF20 experiment_250 X-Score X-ScoreHS ΔSAS X-ScoreHP ASP@GOLD ChemPLP@GOLD X-ScoreHM AutodockVina DrugScore2018 DrugScoreCSD ASE@MOE ChemScore@SYBYL PLP1@DS ChemScore@GOLD G-Score@SYBYL -Alpha-HB@MOE -PLP2@DS -Affinity-dG@MOE -LigScore2@DS -D-Score@SYBYL LUDI2@DS GlideScore-SP GBVI/WSA-dG@MOE LUDI1@DS GBVI/WSA-dG@MOE LUDI1@DS GlideScore-XP Jain@DS LigScore1@DS PMF@DS GoldScore@GOLD London-dG@MOE PMF@SYBYL PMF04@DS · 0.8 0.4 0.6 0.2 1.0 0.0 R

Scoring Power

Figura 103: Experimento 16 - Desempenho das funções de escore no CASF-2016 no teste do Scoring Power.

P.7.2 Ranking Power

scoring_function	Rank	SP	tau	PI
Δ VinaRF20	1	0.75	0.685	0.761
experiment_250	2	0.649	0.5675	0.6727
ChemPLP@GOLD	3	0.633	0.537	0.657
DrugScoreCSD	4	0.63	0.544	0.662
LUDI2@DS	5	0.629	0.542	0.657
LUDI1@DS	6	0.612	0.534	0.64
LigScore2@DS	7	0.608	0.521	0.62
DrugScore2018	8	0.607	0.53	0.637
X-Score	9	0.604	0.529	0.638
Affinity-dG@MOE	10	0.604	0.519	0.619
X-ScoreHM	11	0.603	0.522	0.641
LigScore1@DS	12	0.599	0.523	0.606
ChemScore@SYBYL	13	0.593	0.53	0.617
London-dG@MOE	14	0.593	0.526	0.609
G-Score@SYBYL	15	0.591	0.526	0.609
PLP2@DS	16	0.589	0.512	0.617
Δ SAS	17	0.588	0.498	0.612
PLP1@DS	18	0.582	0.509	0.605
D-Score@SYBYL	19	0.577	0.516	0.598
X-ScoreHP	20	0.573	0.508	0.607
ASP@GOLD	21	0.552	0.474	0.582
X-ScoreHS	22	0.547	0.469	0.577
PMF@DS	23	0.537	0.47	0.559
Alpha-HB@MOE	24	0.535	0.477	0.557
LUDI3@DS	25	0.532	0.449	0.564
AutodockVina	26	0.528	0.452	0.557
ChemScore@GOLD	27	0.526	0.46	0.557
Jain@DS	28	0.521	0.447	0.545
GBVI/WSA-dG@MOE	29	0.489	0.421	0.504
PMF04@DS	30	0.481	0.386	0.497
PMF@SYBYL	31	0.449	0.379	0.478
ASE@MOE	32	0.439	0.372	0.466
GlideScore-SP	33	0.419	0.374	0.425
GoldScore@GOLD	34	0.284	0.242	0.283
GlideScore-XP	35	0.257	0.226	0.255

Tabela 214: Experimento 16 - Comparação com outras funcões de escore do CASF-2016 no teste do *Ranking Power*. Adaptado de: SU et al. (2018).

Ranking Power

Figura 104: Experimento 16 - Desempenho das funções de escore no CASF-2016 no teste do Ranking Power.

P.7.3 Docking Power

scoring function	Rank	TOP1	TOP2	TOP3
AutodockVina	1	90.2	95.8	97.2
Δ VinaRF20	2	89.1	94.4	96.5
GlideScore-SP	3	87.7	91.9	93.7
DrugScoreCSD	4	87.4	93.3	95.1
GBVI/WSA-dG@MOE	5	87.0	91.9	93.3
ChemPLP@GOLD	6	86.0	93.7	96.1
LigScore2@DS	7	85.6	93.3	96.5
experiment_250	8	84.14	92.48	96.13
GlideScore-XP	9	83.9	90.2	94.4
DrugScore2018	10	83.5	89.5	94.0
PLP1@DS	11	82.8	90.5	94.0
ASP@GOLD	12	81.1	88.4	93.0
ChemScore@GOLD	13	80.4	86.0	90.9
PLP2@DS	14	79.3	88.4	92.3
LigScore1@DS	15	76.8	86.0	89.5
GoldScore@GOLD	16	75.1	86.3	90.5
Alpha-HB@MOE	17	71.6	81.1	85.3
X-ScoreHM	18	65.3	77.9	83.5
Affinity-dG@MOE	19	63.5	76.1	83.9
LUDI2@DS	20	63.5	75.1	80.4
X-Score	21	63.5	74.0	80.4
London-dG@MOE	22	63.2	78.2	83.9
LUDI1@DS	23	63.2	73.7	81.1
X-ScoreHS	24	59.6	72.3	78.6
ChemScore@SYBYL	25	57.9	68.8	77.2
X-ScoreHP	26	56.1	67.7	75.1
Jain@DS	27	55.8	67.4	75.8
LUDI3@DS	28	53.0	63.2	71.9
ASE@MOE	29	50.5	60.7	67.0
PMF@SYBYL	30	47.7	57.9	65.3
PMF04@DS	31	46.3	54.0	59.6
G-Score@SYBYL	32	44.2	59.6	69.1
PMF@DS	33	42.8	51.9	58.6
Δ SAS	34	30.2	44.6	51.6
D-Score@SYBYL	35	26.0	40.0	51.9

Tabela 215: Experimento 16 - Comparação com outras funcões de escore do CASF-2016 no teste do *Docking Power*. Adaptado de: SU et al. (2018).

Docking Power

Figura 105: Experimento 16 - Desempenho das funções de escore no CASF-2016 no teste do Docking Power.

P.7.4 Docking Power (without native pose)

scoring function	Rank	TOP1	TOP2	TOP3
Δ VinaRF20	1	84.9	91.6	93.3
GlideScore-SP	2	84.6	90.5	92.6
AutodockVina	3	84.6	90.2	92.6
ChemPLP@GOLD	4	83.2	90.5	93.3
experiment_250	5	82.27	90.8	94.27
GBVI/WSA-dG@MOE	6	82.1	88.4	91.6
GlideScore-XP	7	81.8	89.5	93.0
PLP1@DS	8	81.1	88.4	91.6
LigScore2@DS	9	80.4	91.2	94.4
DrugScoreCSD	10	80.4	89.5	91.9
DrugScore2018	11	79.3	86.3	92.3
ChemScore@GOLD	12	79.3	85.6	90.2
ASP@GOLD	13	78.9	85.6	90.5
PLP2@DS	14	77.2	87.4	91.6
GoldScore@GOLD	15	74.7	86.3	90.5
LigScore1@DS	16	74.0	83.2	87.7
Alpha-HB@MOE	17	70.5	80.4	84.6
X-ScoreHM	18	65.6	77.5	83.2
X-Score	19	63.5	73.3	79.6
LUDI2@DS	20	63.2	74.0	80.4
London-dG@MOE	21	62.1	77.2	83.5
Affinity-dG@MOE	22	62.1	75.1	81.8
LUDI1@DS	23	61.8	73.7	80.7
X-ScoreHS	24	59.3	70.9	77.5
ChemScore@SYBYL	25	57.2	68.4	76.5
X-ScoreHP	26	55.4	67.0	74.7
Jain@DS	27	55.1	67.4	75.8
LUDI3@DS	28	52.6	63.2	71.2
ASE@MOE	29	49.8	59.3	65.3
PMF@SYBYL	30	47.7	56.5	63.9
PMF04@DS	31	44.6	52.6	58.2
G-Score@SYBYL	32	44.2	59.6	69.1
PMF@DS	33	42.1	51.2	57.5
ΔSAS	34	30.2	44.2	51.9
D-Score@SYBYL	35	26.0	40.0	51.9

Tabela 216: Experimento 16 - Comparação com outras funcões de escore do CASF-2016 no teste do *Docking Power (without native pose)*. Adaptado de: SU et al. (2018).

Docking Power (Without Native Pose)

Figura 106: Experimento 16 - Desempenho das funções de escore no CASF-2016 no teste do Docking Power (without native pose).
P.7.5 Forward Screening Power

	ching I ower. Maaplado de.			50 et al. (2010).			
scoring function	Rank	TOP1	TOP5	TOP10	EF1	EF5	EF10
Δ VinaRF20	1	42.1	49.1	54.4	11.73	4.43	3.1
GlideScore-SP	2	36.8	54.4	63.2	11.44	5.83	3.98
ChemPLP@GOLD	3	35.1	61.4	64.9	11.91	5.29	3.59
AutodockVina	4	29.8	40.4	50.9	7.7	4.01	2.87
ChemScore@GOLD	5	28.1	45.6	57.9	8.65	3.95	2.92
GBVI/WSA-dG@MOE	6	26.3	45.6	59.6	7.62	3.61	2.77
GlideScore-XP	7	26.3	45.6	52.6	8.83	4.75	3.51
LigScore2@DS	8	26.3	42.1	50.9	6.82	3.53	2.84
ASP@GOLD	9	22.8	49.1	68.4	6.98	3.95	3.1
LigScore1@DS	10	22.8	36.8	49.1	6.32	3.68	2.74
DrugScoreCSD	11	22.8	33.3	49.1	5.9	2.97	2.54
experiment_250	12	20.73	43.35	52.62	5.981	3.45	2.56
Affinity-dG@MOE	13	19.3	43.9	50.9	5.07	2.77	2.26
GoldScore@GOLD	14	15.8	35.1	42.1	4.27	2.86	1.98
PLP1@DS	15	15.8	31.6	45.6	3.98	2.88	2.39
DrugScore2018	16	15.8	31.6	38.6	3.66	2.25	1.89
LUDI1@DS	17	14.0	29.8	42.1	3.1	2.14	1.81
PMF@DS	18	14.0	26.3	40.4	3.76	1.76	1.59
PMF04@DS	19	14.0	19.3	33.3	3.17	1.68	1.75
LUDI2@DS	20	10.5	28.1	40.4	2.34	2.0	1.63
PLP2@DS	21	8.8	29.8	52.6	1.81	2.43	2.49
Alpha-HB@MOE	22	8.8	21.1	40.4	1.7	1.65	2.02
X-ScoreHM	23	8.8	19.3	31.6	3.21	1.39	1.31
London-dG@MOE	24	7.0	26.3	42.1	2.05	2.3	2.09
PMF@SYBYL	25	7.0	19.3	28.1	1.46	1.77	1.68
Jain@DS	26	7.0	15.8	33.3	1.35	1.31	1.56
X-Score	27	7.0	15.8	28.1	2.68	1.31	1.23
LUDI3@DS	28	7.0	14.0	33.3	1.85	1.15	1.4
ASE@MOE	29	7.0	12.3	28.1	1.44	1.11	1.28
D-Score@SYBYL	30	5.3	17.5	26.3	1.24	1.65	1.34
Δ SAS	31	5.3	14.0	24.6	1.76	1.12	1.15
X-ScoreHS	32	5.3	12.3	28.1	2.17	1.26	1.26
X-ScoreHP	33	3.5	17.5	29.8	1.79	1.54	1.13
G-Score@SYBYL	34	3.5	12.3	26.3	0.89	1.06	1.11
ChemScore@SYBYL	35	1.8	15.8	31.6	0.79	1.26	1.41

Tabela 217: Experimento 16 - Comparação com outras funcões de escore do CASF-2016 no teste do *Forward Screening Power*. Adaptado de: SU et al. (2018).

Forward Screening Power

Figura 107: Experimento 16 - Desempenho das funções de escore no CASF-2016 no teste do Forward Screening Power.

P.7.6 Reverse Screening Power

scoring function	Rank	TOP1	TOP5	TOP10
experiment_250	1	20.06	29.55	35.38
ChemPLP@GOLD	2	17.5	29.1	41.1
GlideScore-SP	3	16.5	27.0	37.5
DrugScoreCSD	4	15.4	23.9	33.0
Δ VinaRF20	5	15.1	24.9	31.6
DrugScore2018	6	14.7	21.8	28.8
ChemScore@GOLD	7	14.4	27.7	39.6
GlideScore-XP	8	14.4	23.5	34.7
GoldScore@GOLD	9	14.0	26.0	34.0
AutodockVina	10	13.7	22.8	31.2
PLP2@DS	11	13.7	22.5	30.2
PLP1@DS	12	13.7	22.1	30.2
GBVI/WSA-dG@MOE	13	13.3	23.9	34.7
LigScore1@DS	14	12.6	21.1	30.9
Alpha-HB@MOE	15	11.9	18.6	31.2
LigScore2@DS	16	11.2	17.5	29.5
ASP@GOLD	17	10.9	22.5	31.9
Affinity-dG@MOE	18	10.2	19.3	25.6
LUDI1@DS	19	7.7	15.1	24.2
X-ScoreHS	20	7.0	13.3	18.2
X-ScoreHP	21	6.7	11.2	17.9
LUDI2@DS	22	6.0	14.7	22.5
X-ScoreHM	23	6.0	14.4	23.2
ChemScore@SYBYL	24	6.0	12.3	19.6
Jain@DS	25	6.0	11.6	17.2
X-Score	26	5.6	12.3	19.3
London-dG@MOE	27	5.6	11.2	19.6
ASE@MOE	28	5.3	10.2	16.5
G-Score@SYBYL	29	3.9	11.2	16.8
LUDI3@DS	30	3.2	7.4	13.7
PMF@DS	31	2.8	8.1	12.6
ΔSAS	32	2.5	8.4	11.9
D-Score@SYBYL	33	2.1	8.4	14.4
PMF@SYBYL	34	2.1	8.1	12.6
PMF04@DS	35	1.8	8.1	12.6

Tabela 218: Experimento 16 - Comparação com outras funcões de escore do CASF-2016 no teste do *Reverse Screening Power*. Adaptado de: SU et al. (2018).

Reverse Screening Power

Figura 108: Experimento 16 - Desempenho das funções de escore no CASF-2016 no teste do Reverse Screening Power.

Q Experimento Nro. 17

Q.1 Metodologia Aplicada

Figura 109: Experimento 17 - Metodologia Aplicada.

Q.2 Conjuntos de Treinamento e Teste

Tabela 219: Experimento 17 - Conjuntos de Treinamento e Teste.

Conjunto	ID	Tamanho
	refined-set18B	4463
Trainamento	weak-set18	467
memamento	csar-nrc-hiq-set	343
	csar-decoys-all-set11	3773
	core-set16	285
Teste	docking-set16	28500
	screening-set16	1624500

Q.3 Descritores

ID	Tamanho
amino20	20
dssp34	34
binana350	350
padel92	92
rdkt2d147	147
rdkt3d11	11
sasa10	10
vina58	58
vina-s1	1

Tabela 220: Experimento 17 - Descritores.

Q.4 Atributo Alvo

$$score = -LogKd$$
 (31)

Q.5 Seleção de Atributos

Tabela 221: Experimento 16 - Configuração da seleção de atributos.

Método	Parâmetros	Nro. Atributos
	repeats $= 10$	
LassoCV	$n_{splits} = 10$	250
	$test_size = 0.1$	

Q.6 Modelo Preditivo

Tabela 222: Experimento 17 - Configuração do modelo preditivo.

Método	ID	Treino	Parâmetros	Nro. Iterações
Random Forest	experiment_250	refined-set18B +csar-nrc-hiq-set +weak-set18 +csar-decoys-all-set11	max_depth: 60 n_estimators: 800	10

Q.7 Resultados

Q.7.1 Scoring Power

scoring function	Rank	N	R	SD
Δ VinaRF20	1	285	0.816	1.26
experiment_250	2	285	0.7994	1.3
X-Score	3	285	0.631	1.69
X-ScoreHS	4	285	0.629	1.69
ΔSAS	5	285	0.625	1.7
X-ScoreHP	6	285	0.621	1.7
ASP@GOLD	7	282	0.617	1.71
ChemPLP@GOLD	8	281	0.614	1.72
X-ScoreHM	9	285	0.609	1.73
AutodockVina	10	285	0.604	1.73
DrugScore2018	11	285	0.602	1.74
DrugScoreCSD	12	285	0.596	1.75
ASE@MOE	13	285	0.591	1.75
ChemScore@SYBYL	14	285	0.59	1.76
PLP1@DS	15	285	0.581	1.77
ChemScore@GOLD	16	279	0.574	1.78
G-Score@SYBYL	17	284	0.572	1.79
Alpha-HB@MOE	18	285	0.569	1.79
PLP2@DS	19	285	0.563	1.8
Affinity-dG@MOE	20	285	0.552	1.81
LigScore2@DS	21	285	0.54	1.83
D-Score@SYBYL	22	284	0.531	1.84
LUDI2@DS	23	285	0.526	1.85
GlideScore-SP	24	258	0.513	1.89
LUDI3@DS	25	285	0.502	1.88
GBVI/WSA-dG@MOE	26	271	0.496	1.91
LUDI1@DS	27	284	0.494	1.88
GlideScore-XP	28	252	0.467	1.95
Jain@DS	29	279	0.457	1.89
LigScore1@DS	30	285	0.425	1.97
PMF@DS	31	282	0.422	1.97
GoldScore@GOLD	32	244	0.416	1.99
London-dG@MOE	33	285	0.405	1.99
PMF@SYBYL	34	279	0.262	2.09
PMF04@DS	35	263	0.212	2.11

Tabela 223: Experimento 17 - Comparação com outras funcões de escore do CASF-2016 no teste do *Scoring Power*. Adaptado de: SU et al. (2018).

ΔVinaRF20 experiment_250 X-Score X-ScoreHS ΔSAS X-ScoreHP ASP@GOLD ChemPLP@GOLD X-ScoreHM AutodockVina DrugScore2018 DrugScoreCSD ASE@MOE ChemScore@SYBYL PLP1@DS ChemScore@GOLD G-Score@SYBYL -Alpha-HB@MOE -PLP2@DS -Affinity-dG@MOE -LigScore2@DS -D-Score@SYBYL LUDI2@DS GlideScore-SP GBVI/WSA-dG@MOE LUDI1@DS GBVI/WSA-dG@MOE LUDI1@DS GlideScore-XP Jain@DS LigScore1@DS PMF@DS GoldScore@GOLD London-dG@MOE PMF@SYBYL PMF04@DS · 0.8 0.4 0.6 0.2 1.0 0.0 R

Scoring Power

Figura 110: Experimento 16 - Desempenho das funções de escore no CASF-2016 no teste do Scoring Power.

Q.7.2 Ranking Power

scoring function	Rank	SP	tau	PI
Δ VinaRF20	1	0.75	0.685	0.761
experiment_250	2	0.6535	0.571	0.6775
ChemPLP@GOLD	3	0.633	0.537	0.657
DrugScoreCSD	4	0.63	0.544	0.662
LUDI2@DS	5	0.629	0.542	0.657
LUDI1@DS	6	0.612	0.534	0.64
LigScore2@DS	7	0.608	0.521	0.62
DrugScore2018	8	0.607	0.53	0.637
X-Score	9	0.604	0.529	0.638
Affinity-dG@MOE	10	0.604	0.519	0.619
X-ScoreHM	11	0.603	0.522	0.641
LigScore1@DS	12	0.599	0.523	0.606
ChemScore@SYBYL	13	0.593	0.53	0.617
London-dG@MOE	14	0.593	0.526	0.609
G-Score@SYBYL	15	0.591	0.526	0.609
PLP2@DS	16	0.589	0.512	0.617
Δ SAS	17	0.588	0.498	0.612
PLP1@DS	18	0.582	0.509	0.605
D-Score@SYBYL	19	0.577	0.516	0.598
X-ScoreHP	20	0.573	0.508	0.607
ASP@GOLD	21	0.552	0.474	0.582
X-ScoreHS	22	0.547	0.469	0.577
PMF@DS	23	0.537	0.47	0.558
Alpha-HB@MOE	24	0.535	0.477	0.557
LUDI3@DS	25	0.532	0.449	0.564
AutodockVina	26	0.528	0.452	0.557
ChemScore@GOLD	27	0.526	0.46	0.557
Jain@DS	28	0.521	0.447	0.545
GBVI/WSA-dG@MOE	29	0.489	0.421	0.504
PMF04@DS	30	0.481	0.386	0.497
PMF@SYBYL	31	0.449	0.379	0.478
ASE@MOE	32	0.439	0.372	0.466
GlideScore-SP	33	0.419	0.374	0.425
GoldScore@GOLD	34	0.284	0.242	0.283
GlideScore-XP	35	0.257	0.226	0.255

Tabela 224: Experimento 17 - Comparação com outras funcões de escore do CASF-2016 no teste do *Ranking Power*. Adaptado de: SU et al. (2018).

Ranking Power

Figura 111: Experimento 17 - Desempenho das funções de escore no CASF-2016 no teste do Ranking Power.

Q.7.3 Docking Power

scoring function	Rank	TOP1	TOP2	TOP3
AutodockVina	1	90.2	95.8	97.2
Δ VinaRF20	2	89.1	94.4	96.5
GlideScore-SP	3	87.7	91.9	93.7
DrugScoreCSD	4	87.4	93.3	95.1
GBVI/WSA-dG@MOE	5	87.0	91.9	93.3
ChemPLP@GOLD	6	86.0	93.7	96.1
LigScore2@DS	7	85.6	93.3	96.5
experiment_250	8	84.27	92.6	96.28
GlideScore-XP	9	83.9	90.2	94.4
DrugScore2018	10	83.5	89.5	94.0
PLP1@DS	11	82.8	90.5	94.0
ASP@GOLD	12	81.1	88.4	93.0
ChemScore@GOLD	13	80.4	86.0	90.9
PLP2@DS	14	79.3	88.4	92.3
LigScore1@DS	15	76.8	86.0	89.5
GoldScore@GOLD	16	75.1	86.3	90.5
Alpha-HB@MOE	17	71.6	81.1	85.3
X-ScoreHM	18	65.3	77.9	83.5
Affinity-dG@MOE	19	63.5	76.1	83.9
LUDI2@DS	20	63.5	75.1	80.4
X-Score	21	63.5	74.0	80.4
London-dG@MOE	22	63.2	78.2	83.9
LUDI1@DS	23	63.2	73.7	81.1
X-ScoreHS	24	59.6	72.3	78.6
ChemScore@SYBYL	25	57.9	68.8	77.2
X-ScoreHP	26	56.1	67.7	75.1
Jain@DS	27	55.8	67.4	75.8
LUDI3@DS	28	53.0	63.2	71.9
ASE@MOE	29	50.5	60.7	67.0
PMF@SYBYL	30	47.7	57.9	65.3
PMF04@DS	31	46.3	54.0	59.6
G-Score@SYBYL	32	44.2	59.6	69.1
PMF@DS	33	42.8	51.9	58.6
Δ SAS	34	30.2	44.6	51.6
D-Score@SYBYL	35	26.0	40.0	51.9

Tabela 225: Experimento 17 - Comparação com outras funcões de escore do CASF-2016 no teste do *Docking Power*. Adaptado de: SU et al. (2018).

Docking Power

Figura 112: Experimento 17 - Desempenho das funções de escore no CASF-2016 no teste do Docking Power.

Q.7.4 Docking Power (without native pose)

scoring function	Rank	TOP1	TOP2	TOP3
AVinaRF20	1	84.9	91.6	93.3
GlideScore-SP	2	84.6	90.5	92.6
AutodockVina	3	84.6	90.2	92.6
ChemPI P@GOI D	4	83.2	90.5	93.3
experiment 250	5	82 17	90.95	94 51
GBVI/WSA-dG@MOF	6	82.1	88.4	91.6
GlideScore-XP	7	81.8	89.5	93.0
PI P1@DS	8	81.1	88.4	91.6
LigScore2@DS	9	80.4	91.2	94.4
DrugScoreCSD	10	80.4	89.5	01 Q
DrugScore2018	10	79.3	86.3	92.3
ChemScore@GOLD	11	79.3	85.6	90.2
	12	78.0	85.6	90.2
	13	70.9	87.4	91.6
GoldScore@GOLD	15	74.7	86.3	90.5
LigScore1@DS	15	74.0	83.2	87.7
Alpha-HB@MOF	10	70.5	80.4	8/1.6
X ScoreHM	17	65.6	77.5	83.2
X-Score	10	63.5	73.3	79.6
	20	63.2	73.3	80.4
London dG@MOE	20	62.1	74.0	83.5
Affinity_dG@MOE	21	62.1	75.1	81.8
	22	61.8	73.1	80.7
X Sagralls	23	50.2	70.0	77.5
ChemScore@SVBVI	24	57.2	68.4	76.5
X ScoreHD	25	55.4	67.0	70.5
A-Scoleni Jain@DS	20	55.4	67.0	75.8
	27	52.6	62.2	71.0
	20	40.8	50.2	65.2
ASEEMICE	29	49.0	56.5	62.0
DMEOLODE	21	4/./	50.5	50 2
	22	44.0	50.6	<u> </u>
U-SCORE SIBIL		44.2	51.0	09.1
		42.1	31.2	51.0
	25	30.2	44.2	51.9
D-Score@SYBYL	35	26.0	40.0	51.9

Tabela 226: Experimento 17 - Comparação com outras funcões de escore do CASF-2016 no teste do *Docking Power (without native pose)*. Adaptado de: SU et al. (2018).

Docking Power (Without Native Pose)

Figura 113: Experimento 17 - Desempenho das funções de escore no CASF-2016 no teste do Docking Power (without native pose).

Q.7.5 Forward Screening Power

scoring_function	Rank	TOP1	TOP5	TOP10	ÈF1	EF5	EF10
Δ VinaRF20	1	42.1	49.1	54.4	11.73	4.43	3.1
GlideScore-SP	2	36.8	54.4	63.2	11.44	5.83	3.98
ChemPLP@GOLD	3	35.1	61.4	64.9	11.91	5.29	3.59
AutodockVina	4	29.8	40.4	50.9	7.7	4.01	2.87
ChemScore@GOLD	5	28.1	45.6	57.9	8.65	3.95	2.92
GBVI/WSA-dG@MOE	6	26.3	45.6	59.6	7.62	3.61	2.77
GlideScore-XP	7	26.3	45.6	52.6	8.83	4.75	3.51
LigScore2@DS	8	26.3	42.1	50.9	6.82	3.53	2.84
ASP@GOLD	9	22.8	49.1	68.4	6.98	3.95	3.1
LigScore1@DS	10	22.8	36.8	49.1	6.32	3.68	2.74
DrugScoreCSD	11	22.8	33.3	49.1	5.9	2.97	2.54
experiment_250	12	21.42	44.05	52.62	6.103	3.503	2.57
Affinity-dG@MOE	13	19.3	43.9	50.9	5.07	2.77	2.26
GoldScore@GOLD	14	15.8	35.1	42.1	4.27	2.86	1.98
PLP1@DS	15	15.8	31.6	45.6	3.98	2.88	2.39
DrugScore2018	16	15.8	31.6	38.6	3.66	2.25	1.89
LUDI1@DS	17	14.0	29.8	42.1	3.1	2.14	1.81
PMF@DS	18	14.0	26.3	40.4	3.76	1.76	1.59
PMF04@DS	19	14.0	19.3	33.3	3.17	1.68	1.75
LUDI2@DS	20	10.5	28.1	40.4	2.34	2.0	1.63
PLP2@DS	21	8.8	29.8	52.6	1.81	2.43	2.49
Alpha-HB@MOE	22	8.8	21.1	40.4	1.7	1.65	2.02
X-ScoreHM	23	8.8	19.3	31.6	3.21	1.39	1.31
London-dG@MOE	24	7.0	26.3	42.1	2.05	2.3	2.09
PMF@SYBYL	25	7.0	19.3	28.1	1.46	1.77	1.68
Jain@DS	26	7.0	15.8	33.3	1.35	1.31	1.56
X-Score	27	7.0	15.8	28.1	2.68	1.31	1.23
LUDI3@DS	28	7.0	14.0	33.3	1.85	1.15	1.4
ASE@MOE	29	7.0	12.3	28.1	1.44	1.11	1.28
D-Score@SYBYL	30	5.3	17.5	26.3	1.24	1.65	1.34
Δ SAS	31	5.3	14.0	24.6	1.76	1.12	1.15
X-ScoreHS	32	5.3	12.3	28.1	2.17	1.26	1.26
X-ScoreHP	33	3.5	17.5	29.8	1.79	1.54	1.13
G-Score@SYBYL	34	3.5	12.3	26.3	0.89	1.06	1.11
ChemScore@SYBYL	35	1.8	15.8	31.6	0.79	1.26	1.41

Tabela 227: Experimento 17 - Comparação com outras funcões de escore do CASF-2016 no teste do *Forward Screening Power*. Adaptado de: SU et al. (2018).

Forward Screening Power

Figura 114: Experimento 17 - Desempenho das funções de escore no CASF-2016 no teste do Forward Screening Power.

Q.7.6 Reverse Screening Power

scoring_function	Rank	TOP1	TOP5	TOP10
experiment_250	1	20.19	29.23	35.26
ChemPLP@GOLD	2	17.5	29.1	41.1
GlideScore-SP	3	16.5	27.0	37.5
DrugScoreCSD	4	15.4	23.9	33.0
Δ VinaRF20	5	15.1	24.9	31.6
DrugScore2018	6	14.7	21.8	28.8
ChemScore@GOLD	7	14.4	27.7	39.6
GlideScore-XP	8	14.4	23.5	34.7
GoldScore@GOLD	9	14.0	26.0	34.0
AutodockVina	10	13.7	22.8	31.2
PLP2@DS	11	13.7	22.5	30.2
PLP1@DS	12	13.7	22.1	30.2
GBVI/WSA-dG@MOE	13	13.3	23.9	34.7
LigScore1@DS	14	12.6	21.1	30.9
Alpha-HB@MOE	15	11.9	18.6	31.2
LigScore2@DS	16	11.2	17.5	29.5
ASP@GOLD	17	10.9	22.5	31.9
Affinity-dG@MOE	18	10.2	19.3	25.6
LUDI1@DS	19	7.7	15.1	24.2
X-ScoreHS	20	7.0	13.3	18.2
X-ScoreHP	21	6.7	11.2	17.9
LUDI2@DS	22	6.0	14.7	22.5
X-ScoreHM	23	6.0	14.4	23.2
ChemScore@SYBYL	24	6.0	12.3	19.6
Jain@DS	25	6.0	11.6	17.2
X-Score	26	5.6	12.3	19.3
London-dG@MOE	27	5.6	11.2	19.6
ASE@MOE	28	5.3	10.2	16.5
G-Score@SYBYL	29	3.9	11.2	16.8
LUDI3@DS	30	3.2	7.4	13.7
PMF@DS	31	2.8	8.1	12.6
Δ SAS	32	2.5	8.4	11.9
D-Score@SYBYL	33	2.1	8.4	14.4
PMF@SYBYL	34	2.1	8.1	12.6
PMF04@DS	35	1.8	8.1	12.6

Tabela 228: Experimento 17 - Comparação com outras funcões de escore do CASF-2016 no teste do *Reverse Screening Power*. Adaptado de: SU et al. (2018).

Reverse Screening Power

Figura 115: Experimento 17 - Desempenho das funções de escore no CASF-2016 no teste do Reverse Screening Power.

R Experimento Nro. 18

R.1 Metodologia Aplicada

Figura 116: Experimento 18 - Metodologia Aplicada.

R.2 Conjuntos de Treinamento e Teste

Tabela 229: Experimento 18 - Conjuntos de Treinamento e Teste									
Conjunto		ID	Tamanho						
		refined-set18B	4463						

	refined-set18B	4463
Treinamento	weak-set18	467
Tremamento	csar-nrc-hiq-set	343
	csar-decoys-all-set11	3773
	core-set16	285
Teste	docking-set16	28500
	screening-set16	1624500

R.3 Descritores

	A 4	T
T	Cabela 230: Experimento 18 - D	Descritores.

ID	Atributos	Tamanho
	amino20, dssp34, binana350,	
set1	padel92, rdkt2d147, rdkt3d11,	723
	sasa10, vina58, vina-s1	
	dssp34, binana350, padel92,	
set2	rdkt2d147, rdkt3d11, sasa10,	703
	vina58, vina-s1	

R.4 Atributo Alvo

$$score = -LogKd$$
 (32)

R.5 Seleção de Atributos

Atributos	Método	Parâmetros	Nro. Atributos
		repeats $= 10$	
set1	LassoCV	$n_{splits} = 10$	250
		$test_size = 0.1$	
		repeats $= 10$	
set2	LassoCV	$n_{splits} = 10$	250
		$test_size = 0.1$	

Tabela 231: Experimento 18 - Configuração da seleção de atributos.

R.6 Modelos Preditivos

Método	ID	Treino	Atributos	Parâmetros
Random Forest	ID lasso_FS lasso_CS lasso_CS+WS lasso_CS+WS lasso_CS+DS lasso_CS+DS lasso_CS+WS+DS lasso_CS+WS+DS	refined-set18B +csar-nrc-hiq-set +weak-set18 +csar-decoys-all-set11	Atributos Index = [set1, set2]	max_depth: 40 n_estimators: 900
	lasso_FS+CS+WS+DS			

Tabela 232: Experimento 18 - Configuração dos modelos preditivos.

R.7 Resultados

R.7.1 Scoring Power

	R		
scoring function	set1	set2	
lasso_250_FS	0.83	0.818	
lasso_250_CS	0.639	0.637	
lasso_250_FS+WS	0.823	0.794	
lasso_250_CS+WS	0.616	0.623	
lasso_250_FS+DS	0.803	0.788	
lasso_250_CS+DS	0.631	0.628	
lasso_250_FS+WS+DS	0.804	0.794	
lasso_250_CS+WS+DS	0.806	0.795	
lasso_250_FS+CS+WS+DS	0.802	0.794	

Tabela 233: Experimento 18 - Análise de aminoácidos no teste do Scoring Power.

Figura 117: Experimento 18 - Análise de aminoácidos no teste do Scoring Power.

R.7.2 Ranking Power

	SP			
scoring function	set1	set2		
lasso_250_FS	0.714	0.684		
lasso_250_CS	0.611	0.623		
lasso_250_FS+WS	0.657	0.679		
lasso_250_CS+WS	0.551	0.532		
lasso_250_FS+DS	0.685	0.67		
lasso_250_CS+DS	0.57	0.553		
lasso_250_FS+WS+DS	0.64	0.667		
lasso_250_CS+WS+DS	0.675	0.672		
lasso_250_FS+CS+WS+DS	0.66	0.66		

Tabela 234: Experimento 18 - Análise de aminoácidos no teste do Ranking Power.

Figura 118: Experimento 18 - Análise de aminoácidos no teste do Ranking Power.

R.7.3 Docking Power

	TOP1		
scoring function	set1	set2	
lasso_250_FS	50.5	47.4	
lasso_250_CS	70.5	70.5	
lasso_250_FS+WS	56.5	68.4	
lasso_250_CS+WS	69.8 66.0		
lasso_250_FS+DS	84.2	82.1	
lasso_250_CS+DS	87.7 89.8		
lasso_250_FS+WS+DS	85.3 84.9		
lasso_250_CS+WS+DS	86.3 84.9		
lasso_250_FS+CS+WS+DS	84.6 84.9		

Tabela 235: Experimento 18 - Análise de aminoácidos no teste do Docking Power.

Figura 119: Experimento 18 - Análise de aminoácidos no teste do Docking Power.

R.7.4 Docking Power (without native pose)

Tabela 236: Experimento 18 - Análise de aminoácidos no teste do *Docking Power* (without native pose).

Figura 120: Experimento 18 - Análise de aminoácidos no teste do *Docking Power* (*without native pose*).

R.7.5 Forward Screening Power

Tabela 237:	Experimento	18 -	Análise	de	aminoácidos	no	teste	do	Forward	Scree	ning
Power.											

	TO	P1
scoring function	set1	set2
lasso_250_FS	24.6	15.8
lasso_250_CS	8.8	10.5
lasso_250_FS+WS	21.1	8.8
lasso_250_CS+WS	12.3	12.3
lasso_250_FS+DS	15.8	15.8
lasso_250_CS+DS	26.3	21.1
lasso_250_FS+WS+DS	21.1	21.1
lasso_250_CS+WS+DS	22.8	19.3
lasso_250_FS+CS+WS+DS	24.6	17.5

Figura 121: Experimento 18 - Análise de aminoácidos no teste do *Forward Screening Power*.

R.7.6 Reverse Screening Power

Tabela 238:	Experimento	18 -	Análise	de	aminoácidos	no	teste	do	Reverse	Screeni	ing
Power.											

	TOP1		
scoring function	set1	set2	
lasso_250_FS	14.0	9.5	
lasso_250_CS	6.3	6.7	
lasso_250_FS+WS	11.2	12.6	
lasso_250_CS+WS	7.0	5.6	
lasso_250_FS+DS	17.9	20.0	
lasso_250_CS+DS	16.5	15.4	
lasso_250_FS+WS+DS	20.0	17.2	
lasso_250_CS+WS+DS	19.3	17.2	
lasso_250_FS+CS+WS+DS	20.0	18.2	

Figura 122: Experimento 18 - Análise de aminoácidos no teste do *Reverse Screening Power*.

S Experimento Nro. 19

Os resultados do Experimento 19 foram mostrados na avaliação da função de escore proposta no Capítulo 5.

T Experimento Nro. 20

T.1 Metodologia Aplicada

Figura 123: Experimento 20 - Metodologia Aplicada.

T.2 Conjuntos de Treinamento e Teste

Tabela 239: Experimento 20 - Conjuntos de Treinamento e Teste.

Conjunto	ID	Tamanho
	refined-set18B	4463
Treinamento	weak-set18	467
Including	csar-nrc-hiq-set	343
	csar-decoys-all-set11	3773
	core-set16	285
Teste	docking-set16	28500
	screening-set16	1624500

T.3 Descritores

ID	Tamanho
amino20	20
dssp34	34
binana350	350
padel92	92
rdkt2d147	147
rdkt3d11	11
sasa10	10
vina58	58
vina-s1	1

Tabela 240: Experimento 20 - Descritores.

T.4 Atributo Alvo

$$score = -LogKd$$
 (33)

T.5 Otimização de parâmetros

Método	Parâmetros	max_features	n_estimators
	cv = 2	Index = $[50, 100, 150,$	Index = $[100, 200, 300,$
GridSearchCV	$n_{jobs} = -1$	200, 250, 300,	400, 500, 600,
	verbose = 2	400, 500, 600, 723]	700, 800, 900, 1000]

T.6 Modelo Preditivo

Tabela 242: Experimento 20 - Configuração do modelo preditivo.

Método	ID	Treino	Parâmetros	Nro. Iterações
Random Forest	experiment_250	refined-set18B +csar-nrc-hiq-set +weak-set18 +csar-decoys-all-set11	max_features: 600 n_estimators: 900	10

T.7 Resultados

T.7.1 Scoring Power

scoring function	Rank	N	R	SD
Δ VinaRF20	1	285	0.816	1.26
experiment_723	2	285	0.8092	1.27
X-Score	3	285	0.631	1.69
X-ScoreHS	4	285	0.629	1.69
Δ SAS	5	285	0.625	1.7
X-ScoreHP	6	285	0.621	1.7
ASP@GOLD	7	282	0.617	1.71
ChemPLP@GOLD	8	281	0.614	1.72
X-ScoreHM	9	285	0.609	1.73
AutodockVina	10	285	0.604	1.73
DrugScore2018	11	285	0.602	1.74
DrugScoreCSD	12	285	0.596	1.75
ASE@MOE	13	285	0.591	1.75
ChemScore@SYBYL	14	285	0.59	1.76
PLP1@DS	15	285	0.581	1.77
ChemScore@GOLD	16	279	0.574	1.78
G-Score@SYBYL	17	284	0.572	1.79
Alpha-HB@MOE	18	285	0.569	1.79
PLP2@DS	19	285	0.563	1.8
Affinity-dG@MOE	20	285	0.552	1.81
LigScore2@DS	21	285	0.54	1.83
D-Score@SYBYL	22	284	0.531	1.84
LUDI2@DS	23	285	0.526	1.85
GlideScore-SP	24	258	0.513	1.89
LUDI3@DS	25	285	0.502	1.88
GBVI/WSA-dG@MOE	26	271	0.496	1.91
LUDI1@DS	27	284	0.494	1.88
GlideScore-XP	28	252	0.467	1.95
Jain@DS	29	279	0.457	1.89
LigScore1@DS	30	285	0.425	1.97
PMF@DS	31	282	0.422	1.97
GoldScore@GOLD	32	244	0.416	1.99
London-dG@MOE	33	285	0.405	1.99
PMF@SYBYL	34	279	0.262	2.09
PMF04@DS	35	263	0.212	2.11

Tabela 243: Experimento 20 - Comparação com outras funcões de escore do CASF-2016no teste do Scoring Power. Adaptado de:SU et al. (2018).

ΔVinaRF20 experiment_723 X-Score X-ScoreHS ΔSAS X-ScoreHP ASP@GOLD ChemPLP@GOLD X-ScoreHM AutodockVina DrugScore2018 DrugScoreCSD ASE@MOE ChemScore@SYBYL PLP1@DS ChemScore@GOLD G-Score@SYBYL -Alpha-HB@MOE -PLP2@DS -Affinity-dG@MOE -LigScore2@DS -D-Score@SYBYL LUDI2@DS GlideScore-SP GBVI/WSA-dG@MOE LUDI1@DS GBVI/WSA-dG@MOE LUDI1@DS GlideScore-XP Jain@DS LigScore1@DS PMF@DS GoldScore@GOLD London-dG@MOE PMF@SYBYL PMF04@DS · 0.8 0.4 0.6 0.2 1.0 0.0 R

Scoring Power

Figura 124: Experimento 20 - Desempenho das funções de escore no CASF-2016 no teste do Scoring Power.

T.7.2 Ranking Power

scoring function	Rank	SP	tau	PI
Δ VinaRF20	1	0.75	0.685	0.761
experiment_723	2	0.659	0.5776	0.6907
ChemPLP@GOLD	3	0.633	0.537	0.657
DrugScoreCSD	4	0.63	0.544	0.662
LUDI2@DS	5	0.629	0.542	0.657
LUDI1@DS	6	0.612	0.534	0.64
LigScore2@DS	7	0.608	0.521	0.62
DrugScore2018	8	0.607	0.53	0.637
X-Score	9	0.604	0.529	0.638
Affinity-dG@MOE	10	0.604	0.519	0.619
X-ScoreHM	11	0.603	0.522	0.640
LigScore1@DS	12	0.599	0.523	0.606
ChemScore@SYBYL	13	0.593	0.53	0.617
London-dG@MOE	14	0.593	0.526	0.609
G-Score@SYBYL	15	0.591	0.526	0.609
PLP2@DS	16	0.589	0.512	0.617
Δ SAS	17	0.588	0.498	0.612
PLP1@DS	18	0.582	0.509	0.605
D-Score@SYBYL	19	0.577	0.516	0.598
X-ScoreHP	20	0.573	0.508	0.607
ASP@GOLD	21	0.552	0.474	0.582
X-ScoreHS	22	0.547	0.469	0.577
PMF@DS	23	0.537	0.47	0.558
Alpha-HB@MOE	24	0.535	0.477	0.557
LUDI3@DS	25	0.532	0.449	0.564
AutodockVina	26	0.528	0.452	0.557
ChemScore@GOLD	27	0.526	0.46	0.557
Jain@DS	28	0.521	0.447	0.545
GBVI/WSA-dG@MOE	29	0.489	0.421	0.504
PMF04@DS	30	0.481	0.386	0.497
PMF@SYBYL	31	0.449	0.379	0.478
ASE@MOE	32	0.439	0.372	0.466
GlideScore-SP	33	0.419	0.374	0.425
GoldScore@GOLD	34	0.284	0.242	0.283
GlideScore-XP	35	0.257	0.226	0.255

Tabela 244: Experimento 20 - Comparação com outras funcões de escore do CASF-2016 no teste do *Ranking Power*. Adaptado de: SU et al. (2018).

Ranking Power

Figura 125: Experimento 20 - Desempenho das funções de escore no CASF-2016 no teste do Ranking Power.
T.7.3 Docking Power

scoring function	Rank	TOP1	TOP2	TOP3		
AutodockVina	1	90.2	95.8	97.2		
Δ VinaRF20	2	89.1	94.4	96.5		
GlideScore-SP	3	87.7	91.9	93.7		
DrugScoreCSD	4	87.4	93.3	95.1		
GBVI/WSA-dG@MOE	5	87.0	91.9	93.3		
ChemPLP@GOLD	6	86.0	93.7	96.1		
LigScore2@DS	7	85.6	93.3	96.5		
GlideScore-XP	8	83.9	90.2	94.4		
DrugScore2018	9	83.5	89.5	94.0		
PLP1@DS	10	82.8	90.5	94.0		
experiment_723	11	82.57	91.26	94.34		
ASP@GOLD	12	81.1	88.4	93.0		
ChemScore@GOLD	13	80.4	86.0	90.9		
PLP2@DS	14	79.3	88.4	92.3		
LigScore1@DS	15	76.8	86.0	89.5		
GoldScore@GOLD	16	75.1	86.3	90.5		
Alpha-HB@MOE	17	71.6	81.1	85.3		
X-ScoreHM	18	65.3	77.9	83.5		
Affinity-dG@MOE	19	63.5	76.1	83.9		
LUDI2@DS	20	63.5	75.1	80.4		
X-Score	21	63.5	74.0	80.4		
London-dG@MOE	22	63.2	78.2	83.9		
LUDI1@DS	23	63.2	73.7	81.1		
X-ScoreHS	24	59.6	72.3	78.6		
ChemScore@SYBYL	25	57.9	68.8	77.2		
X-ScoreHP	26	56.1	67.7	75.1		
Jain@DS	27	55.8	67.4	75.8		
LUDI3@DS	28	53.0	63.2	71.9		
ASE@MOE	29	50.5	60.7	67.0		
PMF@SYBYL	30	47.7	57.9	65.3		
PMF04@DS	31	46.3	54.0	59.6		
G-Score@SYBYL	32	44.2	59.6	69.1		
PMF@DS	33	42.8	51.9	58.6		
Δ SAS	34	30.2	44.6	51.6		
D-Score@SYBYL	35	26.0	40.0	51.9		

Tabela 245: Experimento 20 - Comparação com outras funcões de escore do CASF-2016 no teste do *Docking Power*. Adaptado de: SU et al. (2018).

Docking Power

Figura 126: Experimento 20 - Desempenho das funções de escore no CASF-2016 no teste do Docking Power.

T.7.4 Docking Power (without native pose)

scoring function	Rank	TOP1	TOP2	TOP3
Δ VinaRF20	1	84.9	91.6	93.3
GlideScore-SP	2	84.6	90.5	92.6
AutodockVina	3	84.6	90.2	92.6
ChemPLP@GOLD	4	83.2	90.5	93.3
GBVI/WSA-dG@MOE	5	82.1	88.4	91.6
GlideScore-XP	6	81.8	89.5	93.0
PLP1@DS	7	81.1	88.4	91.6
experiment_723	8	80.54	89.60	92.37
LigScore2@DS	9	80.4	91.2	94.4
DrugScoreCSD	10	80.4	89.5	91.9
DrugScore2018	11	79.3	86.3	92.3
ChemScore@GOLD	12	79.3	85.6	90.2
ASP@GOLD	13	78.9	85.6	90.5
PLP2@DS	14	77.2	87.4	91.6
GoldScore@GOLD	15	74.7	86.3	90.5
LigScore1@DS	16	74.0	83.2	87.7
Alpha-HB@MOE	17	70.5	80.4	84.6
X-ScoreHM	18	65.6	77.5	83.2
X-Score	19	63.5	73.3	79.6
LUDI2@DS	20	63.2	74.0	80.4
London-dG@MOE	21	62.1	77.2	83.5
Affinity-dG@MOE	22	62.1	75.1	81.8
LUDI1@DS	23	61.8	73.7	80.7
X-ScoreHS	24	59.3	70.9	77.5
ChemScore@SYBYL	25	57.2	68.4	76.5
X-ScoreHP	26	55.4	67.0	74.7
Jain@DS	27	55.1	67.4	75.8
LUDI3@DS	28	52.6	63.2	71.2
ASE@MOE	29	49.8	59.3	65.3
PMF@SYBYL	30	47.7	56.5	63.9
PMF04@DS	31	44.6	52.6	58.2
G-Score@SYBYL	32	44.2	59.6	69.1
PMF@DS	33	42.1	51.2	57.5
Δ SAS	34	30.2	44.2	51.9
D-Score@SYBYL	35	26.0	40.0	51.9

Tabela 246: Experimento 20 - Comparação com outras funcões de escore do CASF-2016 no teste do *Docking Power (without native pose)*. Adaptado de: SU et al. (2018).

Docking Power (Without Native Pose)

Figura 127: Experimento 20 - Desempenho das funções de escore no CASF-2016 no teste do Docking Power (without native pose).

T.7.5 Forward Screening Power

		· · · · · · · · · · · · · · · · · · ·			(-).	
scoring function	Rank	TOP1	TOP5	TOP10	EF1	EF5	EF10
Δ VinaRF20	1	42.1	49.1	54.4	11.73	4.43	3.1
GlideScore-SP	2	36.8	54.4	63.2	11.44	5.83	3.98
ChemPLP@GOLD	3	35.1	61.4	64.9	11.91	5.29	3.59
AutodockVina	4	29.8	40.4	50.9	7.7	4.01	2.87
ChemScore@GOLD	5	28.1	45.6	57.9	8.65	3.95	2.92
GBVI/WSA-dG@MOE	6	26.3	45.6	59.6	7.62	3.61	2.77
GlideScore-XP	7	26.3	45.6	52.6	8.83	4.75	3.51
LigScore2@DS	8	26.3	42.1	50.9	6.82	3.53	2.84
ASP@GOLD	9	22.8	49.1	68.4	6.98	3.95	3.1
LigScore1@DS	10	22.8	36.8	49.1	6.32	3.68	2.74
DrugScoreCSD	11	22.8	33.3	49.1	5.9	2.97	2.54
experiment_723	12	21.61	44.23	51.22	6.19	3.627	2.566
Affinity-dG@MOE	13	19.3	43.9	50.9	5.07	2.77	2.26
GoldScore@GOLD	14	15.8	35.1	42.1	4.27	2.86	1.98
PLP1@DS	15	15.8	31.6	45.6	3.98	2.88	2.39
DrugScore2018	16	15.8	31.6	38.6	3.66	2.25	1.89
LUDI1@DS	17	14.0	29.8	42.1	3.1	2.14	1.81
PMF@DS	18	14.0	26.3	40.4	3.76	1.76	1.59
PMF04@DS	19	14.0	19.3	33.3	3.17	1.68	1.75
LUDI2@DS	20	10.5	28.1	40.4	2.34	2.0	1.63
PLP2@DS	21	8.8	29.8	52.6	1.81	2.43	2.49
Alpha-HB@MOE	22	8.8	21.1	40.4	1.7	1.65	2.02
X-ScoreHM	23	8.8	19.3	31.6	3.21	1.39	1.31
London-dG@MOE	24	7.0	26.3	42.1	2.05	2.3	2.09
PMF@SYBYL	25	7.0	19.3	28.1	1.46	1.77	1.68
Jain@DS	26	7.0	15.8	33.3	1.35	1.31	1.56
X-Score	27	7.0	15.8	28.1	2.68	1.31	1.23
LUDI3@DS	28	7.0	14.0	33.3	1.85	1.15	1.4
ASE@MOE	29	7.0	12.3	28.1	1.44	1.11	1.28
D-Score@SYBYL	30	5.3	17.5	26.3	1.24	1.65	1.34
Δ SAS	31	5.3	14.0	24.6	1.76	1.12	1.15
X-ScoreHS	32	5.3	12.3	28.1	2.17	1.26	1.26
X-ScoreHP	33	3.5	17.5	29.8	1.79	1.54	1.13
G-Score@SYBYL	34	3.5	12.3	26.3	0.89	1.06	1.11
ChemScore@SYBYL	35	1.8	15.8	31.6	0.79	1.26	1.41

Tabela 247: Experimento 20 - Comparação com outras funcões de escore do CASF-2016 no teste do *Forward Screening Power*. Adaptado de: SU et al. (2018).

Forward Screening Power

Figura 128: Experimento 20 - Desempenho das funções de escore no CASF-2016 no teste do Forward Screening Power.

T.7.6 Reverse Screening Power

scoring function	Rank	TOP1	TOP5	TOP10				
experiment_723	1	19.08	28.81	35.7				
ChemPLP@GOLD	2	17.5	29.1	41.1				
GlideScore-SP	3	16.5	27.0	37.5				
DrugScoreCSD	4	15.4	23.9	33.0				
Δ VinaRF20	5	15.1	24.9	31.6				
DrugScore2018	6	14.7	21.8	28.8				
ChemScore@GOLD	7	14.4	27.7	39.6				
GlideScore-XP	8	14.4	23.5	34.7				
GoldScore@GOLD	9	14.0	26.0	34.0				
AutodockVina	10	13.7	22.8	31.2				
PLP2@DS	11	13.7	22.5	30.2				
PLP1@DS	12	13.7	22.1	30.2				
GBVI/WSA-dG@MOE	13	13.3	23.9	34.7				
LigScore1@DS	14	12.6	21.1	30.9				
Alpha-HB@MOE	15	11.9	18.6	31.2				
LigScore2@DS	16	11.2	17.5	29.5				
ASP@GOLD	17	10.9	22.5	31.9				
Affinity-dG@MOE	18	10.2	19.3	25.6				
LUDI1@DS	19	7.7	15.1	24.2				
X-ScoreHS	20	7.0	13.3	18.2				
X-ScoreHP	21	6.7	11.2	17.9				
LUDI2@DS	22	6.0	14.7	22.5				
X-ScoreHM	23	6.0	14.4	23.2				
ChemScore@SYBYL	24	6.0	12.3	19.6				
Jain@DS	25	6.0	11.6	17.2				
X-Score	26	5.6	12.3	19.3				
London-dG@MOE	27	5.6	11.2	19.6				
ASE@MOE	28	5.3	10.2	16.5				
G-Score@SYBYL	29	3.9	11.2	16.8				
LUDI3@DS	30	3.2	7.4	13.7				
PMF@DS	31	2.8	8.1	12.6				
Δ SAS	32	2.5	8.4	11.9				
D-Score@SYBYL	33	2.1	8.4	14.4				
PMF@SYBYL	34	2.1	8.1	12.6				
PMF04@DS	35	1.8	8.1	12.6				

Tabela 248: Experimento 20 - Comparação com outras funcões de escore do CASF-2016 no teste do *Reverse Screening Power*. Adaptado de: SU et al. (2018).

Reverse Screening Power

Figura 129: Experimento 20 - Desempenho das funções de escore no CASF-2016 no teste do Reverse Screening Power.

ANEXO A PESOS DOS ATRIBUTOS CALCULADOS PELO LASSO

Tabela 249:	Pesos d	os atributos	calculados	pelo LASSO.

	Tabela 249: Tesos dos atributos calculados pelo LASSO.																
rank	atributo	peso	rank	atributo	peso	rank	atributo	peso	rank	atributo	peso	rank	atributo	peso	rank	atributo	peso
1	W	3.86E+00	56	S	2.59E-01	111	nT12Ring	6.11E-02	166	F58	1.80E-02	221	SlogP_VSA6	3.82E-03	276	NN215	2.10E-05
2	E	3.28E+00	57	NN285	2.50E-01	112	NN233	5.80E-02	167	D4	1.79E-02	222	F4	3.75E-03	277	PEOE_VSA14	1.54E-05
3	R	2.96E+00	58	NN95	2.44E-01	113	NN329	5.77E-02	168	NN46	1.71E-02	223	VSA_EState5	3.73E-03	278	NN188	1.47E-05
4	F	2.65E+00	59	SpherocityIndex	2.16E-01	114	NN74	5.71E-02	169	NN232	1.70E-02	224	NN51	3.52E-03	279	NN219	1.33E-05
5	С	2.39E+00	60	nT7Ring	2.11E-01	115	n8Ring	5.47E-02	170	nF9Ring	1.69E-02	225	F57	3.32E-03	280	NN125	1.30E-05
6	K	2.37E+00	61	n4Ring	2.09E-01	116	NN280	5.41E-02	171	nX	1.67E-02	226	S4	3.30E-03	281	NN193	8.70E-06
7	Q	2.15E+00	62	NN294	2.01E-01	117	NumAliphaticCarbocycles	5.29E-02	172	SlogP_VSA1	1.66E-02	227	SlogP_VSA11	3.04E-03	282	NN119	8.01E-06
8	F43	1.86E+00	63	MQNs_topology_counts_rgIO	1.98E-01	118	EState_VSA7	5.25E-02	173	PEOE_VSA11	1.59E-02	228	S9	2.98E-03	283	PMI2	4.10E-06
9	NN254	1.66E+00	64	nF10HeteroRing	1.96E-01	119	F54	5.24E-02	174	SMR_VSA2	1.50E-02	229	PEOE_VSA4	2.90E-03	284	NN216	3.16E-06
10	NN239	1.58E+00	65	nT11HeteroRing	1.95E-01	120	NN335	5.23E-02	175	SlogP_VSA10	1.48E-02	230	nF9HeteroRing	2.83E-03	285	NN162	3.06E-06
11	NN255	1.56E+00	66	n3Ring	1.92E-01	121	nS	5.13E-02	176	NN288	1.48E-02	231	NN6	2.58E-03	286	NN172	2.72E-06
12	NN261	1.41E+00	67	NN89	1.76E-01	122	NN236	4.63E-02	177	EState_VSA11	1.43E-02	232	NN52	2.56E-03	287	NN173	2.38E-06
13	Ν	1.38E+00	68	MQNs_atom_counts_co	1.75E-01	123	n3HeteroRing	4.55E-02	178	Kappa3	1.41E-02	233	NN15	2.56E-03	288	NN138	2.00E-06
14	Α	1.28E+00	69	NumBridgeheadAtoms	1.75E-01	124	NN303	4.40E-02	179	NN50	1.37E-02	234	F7	2.51E-03	289	NN117	1.85E-06
15	NN238	1.26E+00	70	NN54	1.68E-01	125	MQNs_polarity_counts_hbdm	4.27E-02	180	NN62	1.33E-02	235	n12HeteroRing	2.46E-03	290	NN214	1.26E-06
16	D	1.21E+00	71	nF6HeteroRing	1.61E-01	126	NN77	4.14E-02	181	PEOE_VSA9	1.25E-02	236	NN227	2.23E-03	291	NN164	1.17E-06
17	NN293	1.16E+00	72	NN5	1.49E-01	127	NN76	4.00E-02	182	F1	1.22E-02	237	F53	2.15E-03	292	NN174	1.16E-06
18	L	1.11E+00	73	nF5HeteroRing	1.48E-01	128	NN257	3.99E-02	183	NN313	1.20E-02	238	NN14	2.10E-03	293	NN132	1.01E-06
19	Р	1.09E+00	74	F52	1.47E-01	129	NumAromaticCarbocycles	3.91E-02	184	n6HeteroRing	1.19E-02	239	EState_VSA2	1.98E-03	294	NN135	9.62E-07
20	NN265	1.03E+00	75	NN243	1.46E-01	130	Chi4n	3.84E-02	185	NN22	1.18E-02	240	nBondsM	1.98E-03	295	NN134	9.27E-07
21	NN296	1.03E+00	76	nCl	1.29E-01	131	NN60	3.72E-02	186	nFRing	1.15E-02	241	VSA EState2	1.83E-03	296	NN126	9.08E-07
22	vina	9 15E-01	77	D14	1.22E-01	132	SlogP VSA7	3 59E-02	187	D20	1.11E-02	242	PEOE VSA6	1 74E-03	297	NN161	8 49E-07
23	NN246	8.67E-01	78	NN287	1.18E-01	133	NN228	3.47E-02	188	NN338	1.01E-02	243	NN344	1.71E-03	298	NN218	8.28E-07
24	MONs topology counts r4	8.61E-01	79	MONs bond counts adb	1 16E-01	134	D19	3.45E-02	189	MONs topology counts cay	1.01E-02	244	nG12HeteroRing	1 70E-03	299	NN124	7.60E-07
25	NN75	8 20E-01	80	nT8HeteroRing	1.12E-01	135	NN230	3 37E-02	190	nT9Ring	9.81E-03	245	SMR VSA7	1.69E-03	300	NN140	5 83E-07
26	NN256	7.93E-01	81	NN61	1.07E-01	136	NumSaturatedHeterocycles	3 35E-02	191	NN16	9.63E-03	246	S7	1.68E-03	301	NN139	5 48E-07
27	I	7.65E-01	82	NN235	1.06E-01	137	F36	3 31E-02	192	D13	9.42E-03	247	F47	1.48E-03	302	NN116	3.05E-07
28	nF5Ring	7.18E-01	83	D5	1.06E-01	138	F37	3 24E-02	193	nN	9.39E-03	248	NN3	1.40E 03	303	NN121	1.73E-07
20	MONs atom counts br	7.04E-01	84	NN53	1.03E-01	139	D16	3 21E-02	194	MONs topology counts r8	9.27E-03	240	\$3	1 38E-03	304	NN180	1.69E-07
30	MONs atom counts p	6 58E-01	85	NN99	1.02E-01	140	D30	3 20E-02	195	NN69	8 31E-03	250	SMR VSA5	1.30E 03	305	NN163	1.05E-07
31	NN247	5.48E-01	86	NumAmideBonds	1.02E-01	140	NNO	3.15E-02	106	NIN/7	8 25E-03	251	F10	1.27E-03	306	NN118	1.10E 07
32	nF8HeteroPing	5.38E-01	87	FractionCSP3	0.72E-02	142	nG12Ring	3.08E-02	107	NN25	8.05E-03	251	D12	1.27E-03	307	NN326	3.34E-15
32	NN277	5.00E-01	88	NumAromaticHeterocycles	9.72E-02	142	PEOE VSA2	2.04E-02	108	VSA EState0	8.01E-03	252	\$2	1.20E-03	308	Inc	2.50E-21
34	nT7HeteroPing	4.95E-01	80	NN286	9.63E-02	143	VSA EState/	2.94E-02	100	NN115	7.03E-03	253	52 NN7	1.08E-03	500	ipc	2.501-21
25	NN44	4.90E-01	00	NumSeturetedDinge	0.16E.02	144	PEOE VSA2	2.07E 02	200	NN20	7.25E 02	255	EStata VSA2	9 24E 04			1
26	MONs stom counts al	4.90E-01	90	NN1202	9.10E-02	145	MONe bond counte rhe	2.8712-02	200	nE6Ding	7.25E-05	255	NumSpire Atoms	7.62E.04			1
27	NN278	4.85E-01	02	nT11Ping	9.08E-02 9.62E-02	140	D28	2.73E-02	201	VSA EStato8	6.64E.02	250	SMP VSA10	6 11E 04			1
29	MONs bond counts ath	4.78E-01	92	VSA EStota10	8.03E-02	147	SMD VSA4	2.02E-02	202	vSA_EStateo	6.41E-03	257	SMIK_VSAID	5.26E.04		I	í
20	MONe polority counts page	4.78E-01	04	nEQDing	8.51E 02	140	NN210	2.00E-02	203	E5	6 28E 02	250	nD	4 91E 04			1
40	NN100	4.08E-01	94	NumUA cooptors	8.31E-02 8.25E 02	149	NN222	2.50E-02	204	EStata VSA4	6.18E-03	259	DEOE VSA12	2.05E.04			1
40	nE11HotoroDing	4.58E-01	95	NNIS	8.25E-02 8.05E-02	150	nin552	2.55E-02	205	De	5.08E.02	200	D21	2.67E 04			1
41	NN205	4.34E-01	90	n E71 Jatana Dina	7.07E.02	151	SMD VEAO	2.30E-02	200	Estata VSA9	5.56E-03	201	D21 00	2.22E.04			í
42	MONa atom agunta a	4.19E-01	97	MONe polority counts noon	7.97E-02	152	A anh ani aitu	2.27E-02	207	EState_VSA6	5.55E-05	202	30 D22	3.22E-04			1
45	MQINS_atoIII_counts_s	3.64E-01	98	"RendeD2	7.04E-02	155	Asphericity	2.27E-02	208	DECE VEAS	5.51E-05	205	D55 NN195	2.77E-04			1
44	Eccentricity	3.80E-01	99	nBondsD2	7.40E-02	154	ININOO NINI I I	2.25E-02	209	PEUE_VSA8	5.43E-03	204	ININ 185	2.71E-04		I	(
45	D22 ND142	3.79E-01	100	NN05	7.55E-02	155	NINTI DECE VII 12	2.22E-02	210		5.26E-05	205	05	2.70E-04		I	1
46	NN43	3.70E-01	101	NN108	6.92E-02	156	PEOE_VSA13	2.19E-02	211	SlogP_VSA3	5.18E-03	266	S5	2.48E-04			1
4/	NN59	3.6/E-01	102	MQNs_atom_counts_f	6.91E-02	157	VSA_EState6	2.09E-02	212	nTIORing	5.0/E-03	267	SlogP_VSA5	2.35E-04			1
48	Cni4v	3.41E-01	103	V NN284	0.91E-02	158	DI/	2.02E-02	215	PEOE_VSAI0	4.99E-03	208	D2	1.24E-04		I	í
49	nF11King	3.58E-01	104	ININ284	0.8/E-02	159	n i i UHeteroKing	2.01E-02	214	Slogr_VSA4	4.86E-03	269	DII	1.1/E-04			1
50	NN104	3.35E-01	105	NPKI	6.63E-02	160	NumRotatableBonds	2.00E-02	215	51	4.53E-03	270	NN24	8.72E-05			1
51	nF/Ring	3.22E-01	106	NN58	6.62E-02	161	EState_VSA5	1.99E-02	216	NN23	4.46E-03	271	NN217	8.18E-05			1
52	H	3.18E-01	107	n I 4HeteroRing	6.60E-02	162	EState_VSA6	1.95E-02	217	D32	4.44E-03	272	NN192	6.80E-05		I I	1
53	NN45	3.05E-01	108	NN107	6.59E-02	163	NN325	1.91E-02	218	PEOE_VSA5	4.42E-03	273	NN194	3.06E-05			1
54	NN262	3.01E-01	109	NN105	6.29E-02	164	NN83	1.89E-02	219	NN234	4.08E-03	274	NN187	2.68E-05			1
55	NN260	2.80E-01	110	NN297	6.11E-02	165	BalabanJ	1.84E-02	220	NPR2	3.96E-03	275	NN165	2.11E-05		I 1	1