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In this communication, we report results of three-dimensional hydrodynamic compu-
tations, by using equations of state with a critical end point as suggested by the lattice
QCD. Some of the results are an increase of the multiplicity in the mid-rapidity region
and a larger elliptic-flow parameter vy . We discuss also the effcts of the initial-condition
fluctuations and the continuous emission.

1. INTRODUCTION

Nowadays, it is widely accepted that hydrodynamics is a successful approach for de-
scribing the bulk of the collective flow in high-energy nuclear collisions [ [I]. The basic
assumption in hydrodynamical models is the local thermal equilibrium. Once this con-
dition is satisfied, all the thermodynamical relations should be valid in each space-time
point. The properties of the matter formed in high-energy collisions are then specified by
some equations of state (EoS). Thus, one of the main objects of hydrodynamical approach
is to determine which are the EoS that consistently reproduce the observed quantities.

In high-energy nucleus-nucleus collisions, one often uses EoS with a first-order phase
transition, connecting a high-temperature QGP phase of the system with a low-temperature
hadronic phase. However, lattice QCD studies showed that the transition line between
QGP and hadron phase has a critical end point and for small net baryon surplus the
transition is of crossover type [B]. So, we would like to learn what are the consequences
of these results on the hydrodynamics and on the observable quantities.

We shall begin showing, in the next Section, how the critical end point could be imple-
mented for the sake of phenomenological computations. Besides the EoS, the ingredients
of any hydrodynamic approach are the equations of motion, the initial conditions and
some decoupling prescription. In Sec. Bl we shall discuss how the initial conditions are
chosen in our studies; then, how we solve the hydrodynamic equations; and finally which
is the decoupling prescription. In Sec. Fl we shall show some of the results of our studies.
Finally, summaries of conclusions and outlook are given in Sec. Bl
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2. PARAMETRIZATION OF EQUATIONS OF STATE

As mentioned above, one often introduces EoS with a first-order phase transition, con-
necting a QGP phase of the system, usually described by the MIT bag model, with a
hadronic phase, depicted as a resonance gas. A detailed account of such EoS may be
found, for instance, in [2]. We start from these EoS, in order to get a phenomenological
parametrization of those suggested by lattice QCD.

Let us denote by Py the pressure given by the MIT bag model and Py the one cor-
responding to the hadronic resonance gas. Given a value p; of the baryonic chemical
potential, we write for the pressure P the equation (see Figure [I)

(P = Po)(P = Pu) = 6(1m) , (1)
where
d(pp) = doexp [—(ub/uc)ﬂ : with . = critical chemical potential. (2)
By solving the equation above and using thermodynamical relations, we obtain
P = APy+(1—\Po+ 20 , 3)
\/(Po — Py)? + 46
s = Asg+(1—=XN)sq, (4)
2 (p/p2)

ny, = Ang+(1—Nng— )
C Py = Pap+ 4

2 [1+ (p/pe)’] 0
J(Pg—Pp)2+45
1

where A = 2|1 (Pg~ Pr)/\/(Pg — Pr)? + 45| . (7)
Observe that if 65 = 0, we recover the EoS with the first-order phase transition described
above. In the discussion below, we call them 1OPT EoS. As seen in Figure[ll when §(p;) #
0, the transition from hadron phase to QGP is smooth. In the right-hand side of Eq.([Il), we
could choose some function which be-
comes exactly 0 for p, > p. to guarantee
the first-order phase transition there, but
for practical purpose this is not necessary.
As will be shown below, our choice repre-
sented by Eq.(®) is enough. We shall des-
ignate the equations of state given above,
with dy # 0, CP EoS.

Let us compare in Figure B below, the
temperature dependences of the energy
and entropy densities, ¢ and s, and the
pressure P, given by the two sets of EoS
Figure 1. Illustration of Eqgs.(d) and (). defined above. One can see that the cross-

€ = Xeg+(1—XNeg—

P
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Figure 2. A comparison of £(7"), s(T") and P(T) as given by our parametrization with a
critical point (solid lines) and those with a first-order phase transition (dashed lines).
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Figure 3. Plots of s/e and P as function of ¢ for the two EoS shown in Figure
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over behavior is correctly reproduced by our parametrization for CP EoS, while finite
jumps in €(7) and s(7T') are exhibited by 10PT EoS, when T crosses the transiton tem-
perature. It is also seen, as mentioned above, that at u, ~ 0.4 GeV the two EoS are
indistinguishable.

Now, since in a real collision what is directly given is the energy distribution at a
certain initial time (besides baryon number distribution, charge distribution, strangeness
distribution, etc.), whereas the temperature is defined with the use of the former, it would
be nice to compare the two sets of EoS, by plotting several quantities as function of e.
We do this in Figure Bl One immediately sees there some remarkable differences between
the two sets of EoS: 7 ) naturally the pressure is not constant for CP EoS in the crossover
region; ii ) moreover, the entropy is larger. We will see in Sec.4 that these characteritics
affect the observed quantities in non-negligible way.

3. OTHER INGREDIENTS OF OUR HYDRODYNAMIC MODEL

Besides the equations of state, the other ingredients of a hydrodynamic model are the
initial conditions, the equations of motion and some decoupling prescription. Here we
shall discuss how these elements are chosen in our studies.

3.1. Initial Conditions

In usual hydrodynamic approach, one assumes some highly symmetric and smooth
initial conditions (IC). However, since our systems are small, large event-by-event fluctu-
ations are expected in real collisions, so this effect should be taken into account. Remark
that this might happen even if the impact parameter could be maintained fixed.

Many simulators, based on microscopic models, e.g. HIJING [H], VNI [B], URASIMA
[ 6], NeXuS [ 7], - - -, show such event-by-event fluctuations. As an example we show in
Figure @l the energy density for central Au+Au collisions at 130A GeV, given by NeXuS
simulator [[7], at mid-rapidity. In our approach, we use both fluctuating and averaged IC.
Some consequences of such fluctuations have been discussed elsewhere. We shall discuss
some others in SecHl.

Figure 4. The energy density is plotted in units of GeV/fm? at the initial instant. Left:
one random event. Right: average over 30 random events (corresponding to the smooth
initial conditions in the usual hydro approach).



3D Relativistic Hydrodynamic Computations ... )

3.2. Equations of Motion

The equations of motion of hydrodynamics are the continuity equations expressing the
energy-momentum conservation, the baryon-number conservation, and other conservation
laws, corresponding to several charges. Here, for the sake of simplicity, we shall consider
only the energy-momentum and the baryon number. Since our IC are entirely arbitrary,
without any symmetry, as discussed above, the only way to solve the equations is through
numerical computations. We have developed a numerical code called SPheRIO (Smoothed
Particle hydrodynamic evolution of Relativistic heavy IOn collisions) [ §], based on the
so called Smoothed-Paricle Hydrodynamics (SPH) algorithm [ 9.

3.3. Decoupling Prescription

In hydrodynamic treatment of high-energy nuclear collisions, one often assumes decou-
pling on a sharply defined hypersurface, usually characterized by a constant temperature
Ty,. We call this Sudden Freeze Out (FO). However, our systems are small, so particles
may escape from a layer with thickness comparable with the systems sizes. We have
proposed an alternative decoupling prescription that we call Continuous Emission (CE) |
10] which, as compared to the usual sudden freeze out, we believe closer to what happens
in the actual collisions. We introduce, at each space-time point z*, a certain momentum-
dependent escaping probability

e}

P(z, k) = exp {—/T p(z') ov dT/:| : (8)

To implement this prescription in our SPheRIO code, we had to introduce some ap-
proximation to make the computation practicable. First, we take P on the average, i.e.,

Pz, k) — (P(z,k)) = P(x) (9)

and then we approximate linearly the density p(2’) = a s(z’) in Eq.(). Thus,

Pz, k) — P(x) = exp <—/~€ |d$,s/7d7‘|> , (10)

where k = 0.5 a (ov) is estimated to be 0.3, corresponding to (ov) ~ 2 fm?.

We show, in Figure B the time (7) evolution of the probability P, estimated by this
expression, in the mid-rapidity plane for the most central Au+Au collisions at 130 A GeV.
For comparison, we show, in Figure[dl the corresponding time evolution of the temperature
T. One sees that, whereas in Sudden Freeze Out, particles are emitted from a constant T'
line of Figure @, in Continuous Emission, they are emitted according to the probability
P, so from a difuse space region and during a larger time interval. It will be shown in
Sec. @l that this difference gives important changes in some observables.
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Figure 5. Time evolution of the probability ~Figure 6. Corresponding time evolution of
as given by Eq.(Id) for the most central the temperature.

Au-+Au collisions at 130 A GeV, in the mid-

rapidity plane for averaged IC.

4. RESULTS

Let us now show results of computation of some observables, as described above,
for Au+Au collisions at 200A GeV. We start computing the pseudo-rapidity and the
transverse-momentum distributions for charged particles, to fix the parameters. Then,
the elliptic-flow parameter v, and HBT radii are computed in fit-parameter free way.

4.1. Pseudo-rapidity distribution
In Sec. Bl, we showed that the inclusion of a critical end poit in the first-order phase-
transition line increases the entropy per energy, as compared with 1OPT EoS. This means
that, given the same total energy, the multiplicity is larger for CP EoS case than for 1OPT
EoS one. Figure [ shows clearly that this happens, especially in the mid-rapidity region.
Now, once the equations of state are chosen, what is the effect of the fluctuating initial
conditions for the same decoupling prescription? This effect has already been discussed
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500 [ 500 |-
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Figure 7. n distributions for the most central  Figure 8. n distributions for the most cen-
Au+Au at 200A GeV. A comparison of CP  tral Au+Au at 200A GeV, computed with
EoS (solid line) vs. 10PT EoS (dashed line). ~CP EoS, with three different combinations
The data are from PHOBOS Collab.[ [12]. of IC and decoupling prescriptions.
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earlier [ 2] and shown in Figure B namely, the multiplicity is smaller if the IC fluctuation
is taken into account and average computed after the decoupling, as compared with the
result obtained with smooth averaged IC. The curve with continuous emission is also
shown there, reproducing equally well the data. Here, the parameter x has been fixed as
explained in Subsec.

4.2. Transverse-Momentum Distribution

As discussed in Sec. Bl since the pressure does not remain constant in the crossover
region, we expect that the transverse acceleration is larger for CP EoS, as compared with
10PT EoS case. In effect, Figure @ does show that pr distribution is flatter for CP EoS,
but the difference is small.

We show, in Figure [0 three different combinations of IC and decoupling prescriptions,
corresponding to CP EoS. The curve with the event-by-event fluctuating IC is flatter than
the one corresponding to the averaged 1C, both with sudden freezeout, probably because
the initial expansion in the former is more violent, due to the bumpy structure with high-
density blobs, as seen in Figure @l in this case. The freezeout temperature suggested by n
and pr distributions turned out to be Ty ~ 135 — 140 MeV.
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Figure 9. pr distributions for the most cen- Figure 10. pp distributions for the most
tral Au+Au at 200A GeV. A comparison of central Au+Au at 200A GeV, computed
CP EoS (solid line) vs. 10PT EoS (dashed with CP EoS, with three different com-
line). The data are from PHOBOS Collab.[ binations of IC and decoupling prescrip-

3. tions.

4.3. Elliptic-Flow Parameter v,

Here, we show our results for the pseudo-rapidity distribution of the elliptic-flow pa-
rameter vo for Au+Au collisions at 200A GeV. As seen in Figure [l CP EoS gives larger
vy, as a consequence of larger acceleration in this case as discussed in Sec Notice that
the continuous emission makes the curves narrower, as a consequence of earlier emission
of particles, so smaller acceleration, at large-|n| regions. See more detils in[[IT]. When the
IC fluctuations are taken into account, the resulting fluctuations of v, become large, as
seen in Figures[[Mand[[2 It would be nice to measure such a v, distribution, which would
discriminate among several microscopic models for the initial stage of nuclear collisions.
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4.4. HBT Radii
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Here, we show our results for the HBT radii, in Gaussian approximation as used in
experimental data analyses, for the most central Au+Au collisions at 200A GeV. As seen
in Figures [[3], [[4 and M3, the differences between CP EoS results and those for 1OPT EoS
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Figure 13. kr depenence of HBT radius Ry,
for pions in the most central Au4+Au at 200A
GeV, computed with event-by-event fluctu-
ating IC. The data are from PHENIX Col-
lab.[ 5]
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Figure 14. k7 depenence of HBT radius
R, for pions in the most central Au+Au
at 200A GeV, computed with event-by-
event fluctuating IC. The data are from
PHENIX Collab.[ [T5].



3D Relativistic Hydrodynamic Computations ... 9

=
o

L T

| T

CP EoS (CE)
— — — - CPEoS (FO)
10PT EoS (CE)
10PT EoS (FO)

R, (fm)

P NWS OO N 00O

1 I 1 1
0O 020406 08 1 12 14
k; (GeV)

Figure 15. k7 depenence of HBT radius R,
for pions in the most central Au+Au at 200A
GeV, computed with event-by-event fluctu-
ating IC. The data are from PHENIX Col-
lab.[ T5].

2.5

® T
L | T
2 L CP EoS (CE)
— — — - CPEoS (FO)
. 10PT EoS (CE)
D:U) 10PT EoS (FO)
o 1-5 I
1 —
| | T I ST !

0-5 1 1 1
0 02040608 1 1.2 1.4
k. (GeV)

Figure 16.  kp depenence of the ra-
tio R,/Rs for pions in the most central
Au+Au at 200A GeV, computed with
event-by-event fluctuating IC. The data
are from PHENIX Collab.[ [15].

are small. This was expected for the case of Ry . For R, and especially for R, , one sees
that CP EoS combined with continuous emission gives steeper kr dependence, closer to
the data. However, there is still numerical discrepancy in this case.

5. CONCLUSIONS AND OUTLOOKS

In this work, we have introduced a phenomenological parametrization of lattice-QCD-
inspired equations of state, which presents a first-order phase transition at large baryonic
chemical potential and a crossover behavior at smaller chemical potential. By using the
initial conditions generated by NeXuS event simulator and SPheRIO code for solving the
hydrodynamic equations, some observables were computed and studied the effects of such

EoS. Some of the conclusions are:

1. The multiplicity becomes larger for these equations of state in the mid-rapidity;

2. The pr distribution becomes flatter. However, the differece is small;

3. Larger vy . Continuous Emission makes the n distribution narrower;

4. HBT radii slightly closer to data.

In our calculations, the effect of the continuous emission on the interacting component
has not been taken into account. A more realistic treatment of this effect probably
makes R, smaller, because the duration for particle emission becomes smaller in this case.
Another improvement we should make is the approximations we used for Eq.(8). Cascade
treatment of this part is probably a better alternative.
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