

Interpolação

4.7.1 Conceito de Diferenças Finitas

Quando os pontos (x_i, y_i) i = 0, 1, 2, ..., n estão **igualmente espaçados**, a diferença entre dois pontos sucessivos é calculada por:

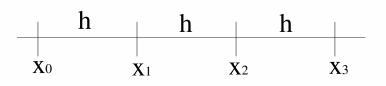
$$h = x_{i+1} - x_i$$
; $i = 0, 1, 2, ..., n-1$ onde h é uma constante.

4.7.1 Conceito de Diferenças Finitas

Quando os pontos (x_i, y_i) i = 0, 1, 2, ..., n estão igualmente espaçados, a diferença entre dois pontos sucessivos é calculada por:

$$h = x_{i+1} - x_i; \ i = 0, 1, 2, \dots, n-1$$

onde h é uma constante. Veja:

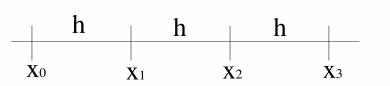


4.7.1 Conceito de Diferenças Finitas

Quando os pontos (x_i, y_i) i = 0, 1, 2, ..., n estão igualmente espaçados, a diferença entre dois pontos sucessivos é calculada por:

$$h = x_{i+1} - x_i$$
; $i = 0, 1, 2, ..., n-1$ onde h é uma constante.

Definindo:
$$z = \frac{x - x_0}{h}$$

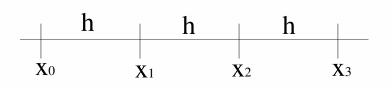


4.7.1 Conceito de Diferenças Finitas

Quando os pontos (x_i, y_i) i = 0, 1, 2, ..., n estão igualmente espaçados, a diferença entre dois pontos sucessivos é calculada por:

$$h = x_{i+1} - x_i; i = 0, 1, 2, ..., n-1$$

Definindo:
$$z = \frac{x - x_0}{h}$$



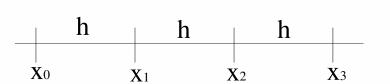
4.7.1 Conceito de Diferenças Finitas

Quando os pontos (x_i, y_i) i = 0, 1, 2, ..., n estão igualmente espaçados, a diferença entre dois pontos sucessivos é calculada por:

$$h = x_{i+1} - x_i; i = 0, 1, 2, ..., n-1$$

Definindo:
$$z = \frac{x - x_0}{h}$$

$$logo: x - x_0 = hz$$



4.7.1 Conceito de Diferenças Finitas

Quando os pontos (x_i, y_i) i = 0, 1, 2, ..., n estão igualmente espaçados, a diferença entre dois pontos sucessivos é calculada por:

$$h = x_{i+1} - x_i; i = 0, 1, 2, ..., n-1$$

onde $h \in \text{uma constante}$

Definindo:
$$z = \frac{x - x_0}{h}$$

$$\log 0: \quad x - x_0 = hz$$
$$x - x_1 =$$

4.7.1 Conceito de Diferenças Finitas

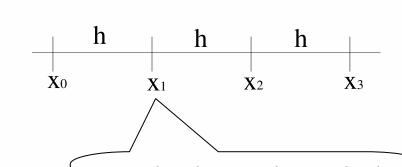
Quando os pontos (x_i, y_i) i = 0, 1, 2, ..., n estão igualmente espaçados, a diferença entre dois pontos sucessivos é calculada por:

$$h = x_{i+1} - x_i$$
; $i = 0, 1, 2, ..., n-1$ onde h é uma constante.

Definindo:
$$z = \frac{x - x_0}{h}$$

logo:
$$x - x_0 = hz$$

 $x - x_1 =$



O valor de x_1 pode ser obtido pela expressão: $x_1 = x_0 + h$.

4.7.1 Conceito de Diferenças Finitas

Quando os pontos (x_i, y_i) i = 0, 1, 2, ..., n estão igualmente espaçados, a diferença entre dois pontos sucessivos é calculada por:

$$h = x_{i+1} - x_i$$
; $i = 0, 1, 2, ..., n-1$ onde h é uma constante.

Definindo:
$$z = \frac{x - x_0}{h}$$

logo:
$$x - x_0 = hz$$

 $x - x_1 = x - (x_0 + h) = 0$

4.7.1 Conceito de Diferenças Finitas

Quando os pontos (x_i, y_i) i = 0, 1, 2, ..., n estão igualmente espaçados, a diferença entre dois pontos sucessivos é calculada por:

$$h = x_{i+1} - x_i$$
; $i = 0, 1, 2, ..., n-1$ onde h é uma constante.

Definindo:
$$z = \frac{x - x_0}{h}$$

logo:
$$x - x_0 = hz$$

 $x - x_1 = x - (x_0 + h) = x - x_0 - h = hz$

4.7.1 Conceito de Diferenças Finitas

Quando os pontos (x_i, y_i) i = 0, 1, 2, ..., n estão igualmente espaçados, a diferença entre dois pontos sucessivos é calculada por:

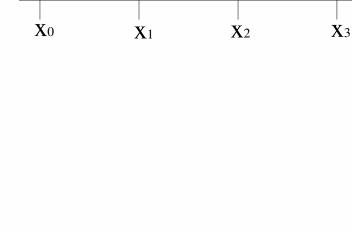
$$h = x_{i+1} - x_i; i = 0, 1, 2, ..., n-1$$

onde h é uma constante.

Definindo:
$$z = \frac{x - x_0}{h}$$

 $logo: x - x_0 = hz$

$$x - x_1 = x - (x_0 + h) = \underbrace{x - x_0}_{hz} - h =$$



Ver expressão acima.

4.7.1 Conceito de Diferenças Finitas

Quando os pontos (x_i, y_i) i = 0, 1, 2, ..., n estão igualmente espaçados, a diferença entre dois pontos sucessivos é calculada por:

$$h = x_{i+1} - x_i; i = 0, 1, 2, ..., n-1$$

Definindo:
$$z = \frac{x - x_0}{h}$$

$$logo: x - x_0 = hz$$

$$x - x_1 = x - (x_0 + h) = x - x_0 - h = hz - h =$$

4.7.1 Conceito de Diferenças Finitas

Quando os pontos (x_i, y_i) i = 0, 1, 2, ..., n estão igualmente espaçados, a diferença entre dois pontos sucessivos é calculada por:

$$h = x_{i+1} - x_i; i = 0, 1, 2, ..., n-1$$

Definindo:
$$z = \frac{x - x_0}{h}$$

$$logo: x - x_0 = hz$$

$$x - x_1 = x - (x_0 + h) = x - x_0 - h = hz - h = h(z - 1)$$

4.7.1 Conceito de Diferenças Finitas

Quando os pontos (x_i, y_i) i = 0, 1, 2, ..., n estão igualmente espaçados, a diferença entre dois pontos sucessivos é calculada por:

$$h = x_{i+1} - x_i$$
; $i = 0, 1, 2, ..., n-1$
onde h é uma constante.

Definindo:
$$z = \frac{x - x_0}{h}$$

$$logo: x - x_0 = hz$$

logo:
$$x - x_0 = hz$$

$$x - x_1 = x - (x_0 + h) = x - x_0 - h = hz - h = h(z - 1)$$

$$x - x_2 =$$

4.7.1 Conceito de Diferenças Finitas

Quando os pontos (x_i, y_i) i = 0, 1, 2, ..., n estão igualmente espaçados, a diferença entre dois pontos sucessivos é calculada por:

$$h = x_{i+1} - x_i; i = 0, 1, 2, ..., n-1$$

Definindo:
$$z = \frac{x - x_0}{h}$$

$$\log o: \quad x - x_0 = hz$$

$$x - x_1 = x - (x_0 + h) = x - x_0 - h = hz - h = h(z - 1)$$

$$x - x_2 = x - (x_0 + 2h) =$$

4.7.1 Conceito de Diferenças Finitas

Quando os pontos (x_i, y_i) i = 0, 1, 2, ..., n estão igualmente espaçados, a diferença entre dois pontos sucessivos é calculada por:

$$h = x_{i+1} - x_i; i = 0, 1, 2, ..., n-1$$

Definindo:
$$z = \frac{x - x_0}{h}$$

logo:
$$x - x_0 = hz$$

$$x - x_1 = x - (x_0 + h) = x - x_0 - h = hz - h = h(z - 1)$$

$$x - x_2 = x - (x_0 + 2h) = \underbrace{x - x_{0}}_{hz} - 2h$$

4.7.1 Conceito de Diferenças Finitas

Quando os pontos (x_i, y_i) i = 0, 1, 2, ..., n estão igualmente espaçados, a diferença entre dois pontos sucessivos é calculada por:

$$h = x_{i+1} - x_i; i = 0, 1, 2, ..., n-1$$

Definindo:
$$z = \frac{x - x_0}{h}$$

$$logo: x - x_0 = hz$$

$$x - x_1 = x - (x_0 + h) = x - x_0 - h = hz - h = h(z - 1)$$

$$x - x_2 = x - (x_0 + 2h) = x - x_0 - 2h = hz - 2h = h(z - 2)$$

4.7.1 Conceito de Diferenças Finitas

Quando os pontos (x_i, y_i) i = 0, 1, 2, ..., n estão igualmente espaçados, a diferença entre dois pontos sucessivos é calculada por:

$$h = x_{i+1} - x_i$$
; $i = 0, 1, 2, ..., n-1$
onde h é uma constante.

Definindo: $z = \frac{x - x_0}{h}$

$$\log o: \quad x - x_0 = hz$$

$$x - x_1 = x - (x_0 + h) = x - x_0 - h = hz - h = h(z - 1)$$

$$x - x_2 = x - (x_0 + 2h) = x - x_0 - 2h = hz - 2h = h(z - 2)$$

• • •

$$x - x_{n-1} = \dots = h(z - (n-1))$$

A fórmula de Newton para interpolação com diferenças divididas,

estudo anteriormente, é dada por:
$$P_{n}(x) = y_{0} + (x - x_{0})\Delta_{d} y_{0} + (x - x_{0})(x - x_{1})\Delta_{d}^{2} y_{0} + ... + (x - x_{0})...(x - x_{n-1})\Delta_{d}^{n} y_{0}$$

A fórmula de Newton para interpolação com diferenças divididas,

estudo anteriormente, é dada por:

$$P_{n}(x) = y_{0} + (x - x_{0})\Delta_{d}y_{0} + (x - x_{0})(x - x_{1})\Delta_{d}^{2}y_{0} + ... + (x - x_{0})...(x - x_{n-1})\Delta_{d}^{n}y_{0}$$
 (2)

Substituindo as eqs. (1) na eq. (2), obtém-se:
$$P_{n}(x) = y_{0} + hz\Delta_{d}y_{0} + hzh(z-1)\Delta_{d}^{2}y_{0} + ... + hzh(z-1)...h(z-(n-1))\Delta_{d}^{n}y_{0}$$

$$P_n(x) = y_0 + nz\Delta_d y_0 + nz\Delta_d y_0 + ... + n$$

A fórmula de Newton para interpolação com diferenças divididas,

estudo anteriormente, é dada por:

$$P_{n}(x) = y_{0} + (x - x_{0})\Delta_{d} y_{0} + (x - x_{0})(x - x_{1})\Delta_{d}^{2} y_{0} + ... + (x - x_{0})...(x - x_{n-1})\Delta_{d}^{n} y_{0}$$
 (2)

Substituindo as eqs. (1) na eq. (2), obtém-se:

$$P_n(x) = y_0 + hz\Delta_d y_0 + hzh(z-1)\Delta_d^2 y_0 + \dots + hzh(z-1)\dots h(z-(n-1))\Delta_d^n y_0$$

$$P_n(x) = y_0 + hz\Delta_d y_0 + hzh(z-1)\Delta_d y_0 + ... + hzh(z-1)...h(z-(n-1))\Delta_d y_0$$

$$P_n(x) = y_0 + hz\Delta_d y_0 + h^2z(z-1)\Delta_d^2 y_0 + ... + h^nz(z-1)...(z-(n-1))\Delta_d^n y_0$$

Para definir a fórmula de Gregory-Newton para interpolação com diferenças finitas é necessário substituir as diferenças divididas da expressão acima por diferenças finitas.

A fórmula de Newton para interpolação com diferenças divididas é dada por:

$$P_n(x) = y_0 + (x - x_0)\Delta_d y_0 + (x - x_0)(x - x_1)\Delta_d^2 y_0 + \dots + (x - x_0)\dots(x - x_{n-1})\Delta_d^n y_0$$

Substituindo as eqs. (1) na eq. (2), obtém-se:

$$P_n(x) = y_0 + hz\Delta_d y_0 + hzh(z-1)\Delta_d^2 y_0 + \dots + hzh(z-1)\dots h(z-(n-1))\Delta_d^n y_0$$

 $P_n(x) = y_0 + hz\Delta_d y_0 + h^2z(z-1)\Delta_d^2 y_0 + ... + h^nz(z-1)...(z-(n-1))\Delta_d^n y_0$

 $\Delta^0 y_i = y_i$

Diferença finita de ordem zero de
$$y_i$$
 ($\Delta^0 y_i$)

é igual ao valor da função (y_i).

ordem 0

FURG – IMEF – Prof. Tales Luiz Popiolek

A fórmula de Newton para interpolação com diferenças divididas é dada por:

$$P_n(x) = y_0 + (x - x_0)\Delta_d y_0 + (x - x_0)(x - x_1)\Delta_d^2 y_0 + \dots + (x - x_0)\dots(x - x_{n-1})\Delta_d^n y_0$$

Substituindo as eqs. (1) na eq. (2), obtém-se:

$$P_n(x) = y_0 + hz\Delta_d y_0 + hzh(z-1)\Delta_d^2 y_0 + \dots + hzh(z-1)\dots h(z-(n-1))\Delta_d^n y_0$$

 $P_n(x) = y_0 + hz\Delta_d y_0 + h^2z(z-1)\Delta_d^2 y_0 + ... + h^nz(z-1)...(z-(n-1))\Delta_d^n y_0$

$$\Delta^{0} y_{i} = y_{i}$$
ordem 0
$$\Delta y_{i} = y_{i+1} - y_{i}$$
ordem 1

Diferença finita de primeira ordem de y_i (Δy_i) é igual a diferença dos valores da função (y_{i+1} - y_i).

A fórmula de Newton para interpolação com diferenças divididas é dada por:

$$P_n(x) = y_0 + (x - x_0)\Delta_d y_0 + (x - x_0)(x - x_1)\Delta_d^2 y_0 + \dots + (x - x_0)\dots(x - x_{n-1})\Delta_d^n y_0$$
 (

Substituindo as eqs. (1) na eq. (2), obtém-se:

$$P_n(x) = y_0 + hz\Delta_d y_0 + hzh(z-1)\Delta_d^2 y_0 + ... + hzh(z-1)...h(z-(n-1))\Delta_d^n y_0$$

$$P_n(x) = y_0 + hz\Delta_d y_0 + h^2z(z-1)\Delta_d^2 y_0 + ... + h^nz(z-1)...(z-(n-1))\Delta_d^n y_0$$

$$\Delta^{0} y_{i} = y_{i}$$

$$\Delta y_{i} = y_{i+1} - y_{i}$$

$$\Delta^{2} y_{i} = \Delta y_{i+1} - \Delta y_{i} = 0$$
ordem 0
$$\Delta^{2} y_{i} = \Delta y_{i+1} - \Delta y_{i} = 0$$

Diferença finita de segunda ordem de y_i ($\Delta^2 y_i$) é igual a diferença entre as diferenças finitas de primeira ordem de y_{i+1} e y_i .

Desenvolvendo a expressão acima obtém-se:

(3)

A fórmula de Newton para interpolação com diferenças divididas é dada por:

$$P_n(x) = y_0 + (x - x_0)\Delta_d y_0 + (x - x_0)(x - x_1)\Delta_d^2 y_0 + \dots + (x - x_0)\dots(x - x_{n-1})\Delta_d^n y_0$$
 (

Substituindo as eqs. (1) na eq. (2), obtém-se:

$$P_n(x) = y_0 + hz\Delta_d y_0 + hzh(z-1)\Delta_d^2 y_0 + ... + hzh(z-1)...h(z-(n-1))\Delta_d^n y_0$$

$$P_n(x) = y_0 + hz\Delta_d y_0 + h^2z(z-1)\Delta_d^2 y_0 + ... + h^nz(z-1)...(z-(n-1))\Delta_d^n y_0$$

Por definição, as diferenças finitas é dada por:

$$\Delta^{0} y_{i} = y_{i}$$
 ordem 0
$$\Delta y_{i} = y_{i+1} - y_{i}$$
 ordem 1
$$\Delta^{2} y_{i} = \Delta y_{i+1} - \Delta y_{i} = y_{i+2} - y_{i+1} - (y_{i+1} - y_{i})$$
 ordem 2

FURG – IMEF – Prof. Tales Luiz Popiolel

A fórmula de Newton para interpolação com diferenças divididas é dada por:

$$P_n(x) = y_0 + (x - x_0)\Delta_d y_0 + (x - x_0)(x - x_1)\Delta_d^2 y_0 + \dots + (x - x_0)\dots(x - x_{n-1})\Delta_d^n y_0$$

Substituindo as eqs. (1) na eq. (2), obtém-se:

$$P_n(x) = y_0 + hz\Delta_d y_0 + hzh(z-1)\Delta_d^2 y_0 + ... + hzh(z-1)...h(z-(n-1))\Delta_d^n y_0$$

$$P_n(x) = y_0 + hz\Delta_d y_0 + h^2z(z-1)\Delta_d^2 y_0 + ... + h^nz(z-1)...(z-(n-1))\Delta_d^n y_0$$

Por definição, as diferenças finitas é dada por:

$$\Delta^{0} y_{i} = y_{i}$$
 ordem 0
$$\Delta y_{i} = y_{i+1} - y_{i}$$
 ordem 1
$$\Delta^{2} y_{i} = \Delta y_{i+1} - \Delta y_{i} = y_{i+2} - y_{i+1} - (y_{i+1} - y_{i})$$
 ordem 2

$$\Delta^3 y_i = \Delta y_{i+1} \quad \Delta y_i = y_i$$
$$\Delta^3 y_i = \Delta^2 y_{i+1} - \Delta^2 y_i$$

(3)

(3)

A fórmula de Newton para interpolação com diferenças divididas é dada por:

$$P_n(x) = y_0 + (x - x_0)\Delta_d y_0 + (x - x_0)(x - x_1)\Delta_d^2 y_0 + \dots + (x - x_0)\dots(x - x_{n-1})\Delta_d^n y_0$$
 (

Substituindo as eqs. (1) na eq. (2), obtém-se:

$$P_n(x) = y_0 + hz\Delta_d y_0 + hzh(z-1)\Delta_d^2 y_0 + \dots + hzh(z-1)\dots h(z-(n-1))\Delta_d^n y_0$$

$$P_n(x) = y_0 + hz\Delta_d y_0 + h^2 z(z-1)\Delta_d^2 y_0 + ... + h^n z(z-1)...(z-(n-1))\Delta_d^n y_0$$

Por definição, as diferenças finitas é dada por:

$$\Delta^0 y_i = y_i \qquad \text{ordem 0}$$

$$\Delta y_i = y_{i+1} - y_i \qquad \text{ordem 1}$$

$$\Delta y_{i} - y_{i+1} - y_{i}$$

$$\Delta^{2} y_{i} = \Delta y_{i+1} - \Delta y_{i} = y_{i+2} - y_{i+1} - (y_{i+1} - y_{i})$$

$$\Delta^{3} y_{i} = \Delta^{2} y_{i+1} - \Delta^{2} y_{i} = \Delta y_{i+2} - \Delta y_{i+1} - (\Delta y_{i+1} - \Delta y_{i}) = 0$$

$$\Delta^{3} y_{i} = \Delta^{2} y_{i+1} - \Delta^{2} y_{i} = \Delta y_{i+2} - \Delta y_{i+1} - (\Delta y_{i+1} - \Delta y_{i}) =$$

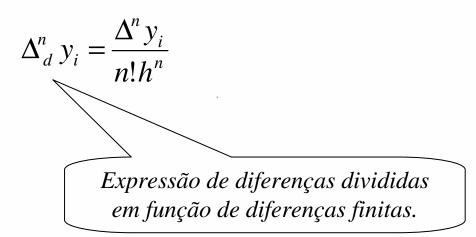
$$y_{i+3} - y_{i+2} - (y_{i+2} - y_{i+1}) - (y_{i+2} - y_{i+1} - (y_{i+1} - y_{i}))$$

ordem 2 $\Delta^3 y_i = \Delta^2 y_{i+1} - \Delta^2 y_i = \Delta y_{i+2} - \Delta y_{i+1} - (\Delta y_{i+1} - \Delta y_i) =$

 $y_{i+3} - y_{i+2} - (y_{i+2} - y_{i+1}) - (y_{i+2} - y_{i+1} - (y_{i+1} - y_i))$ ordem 3

 $\Delta^{n} y_{i} = \Delta^{n-1} y_{i+1} - \Delta^{n-1} y_{i}$ ordem n

Teorema: Seja a função y = f(x) definida pelos pontos (x_i, y_i) i = 0, 1, 2, ..., n, tal que $h = x_{i+1}$ - x_i para todo i.



Teorema: Seja a função y = f(x) definida pelos pontos (x_i, y_i) i = 0, 1, 2, ..., n, tal que $h = x_{i+1}$ - x_i para todo i.

$$\Delta_d^n y_i = \frac{\Delta^n y_i}{n!h^n}$$

$$\Delta_d y_i = \frac{y_{i+1} - y_i}{x_{i+1} - x_i} =$$

Teorema: Seja a função y = f(x) definida pelos pontos (x_i, y_i) i = 0, 1, 2, ..., n, tal que $h = x_{i+1}$ - x_i para todo i.

$$\Delta_d^n y_i = \frac{\Delta^n y_i}{n!h^n}$$

$$\Delta_d y_i = \frac{y_{i+1} - y_i}{x_{i+1} - x_i} = \frac{y_{i+1} - y_i}{h} =$$

Teorema: Seja a função y = f(x) definida pelos pontos (x_i, y_i) i = 0, 1, 2, ..., n, tal que $h = x_{i+1}$ - x_i para todo i.

$$\Delta_d^n y_i = \frac{\Delta^n y_i}{n!h^n}$$

$$\Delta_d y_i = \frac{y_{i+1} - y_i}{x_{i+1} - x_i} = \frac{y_{i+1} - y_i}{h} = \frac{\Delta y_i}{h} = \frac{\Delta y_i}{(1!)h}$$
(4)

Teorema: Seja a função y = f(x) definida pelos pontos (x_i, y_i) i = 0, 1, 2, ..., n, tal que $h = x_{i+1}$ - x_i para todo i.

$$\Delta_d^n y_i = \frac{\Delta^n y_i}{n!h^n}$$

Provar para n = 1:

$$\Delta_d y_i = \frac{y_{i+1} - y_i}{x_{i+1} - x_i} = \frac{y_{i+1} - y_i}{h} = \frac{\Delta y_i}{h} = \frac{\Delta y_i}{(1!)h}$$
(4)

$$\Delta_d^2 y_i = \frac{\Delta_d y_{i+1} - \Delta_d y_i}{x_{i+2} - x_i} =$$

(4)

4.7.2 Fórmula de Gregory-Newton:

Teorema: Seja a função y = f(x) definida pelos pontos (x_i, y_i) i = 0, 1, 2, ..., n, tal que $h = x_{i+1} - x_i$ para todo i.

$$\Delta_d^n y_i = \frac{\Delta^n y_i}{n!h^n}$$

Provar para n = 1:

$$\Delta_d y_i = \frac{y_{i+1} - y_i}{x_{i+1} - x_i} = \frac{y_{i+1} - y_i}{h} = \frac{\Delta y_i}{h} = \frac{\Delta y_i}{h}$$
 (1!) h

Provar para
$$n = 2$$
:
$$\Delta_d^0 y_{i+2} - \Delta_d^0 y_{i+1} - \Delta_d^0 y_{i+1} - \Delta_d^0 y_i - \Delta_d^0 y_i = \frac{\Delta_d^0 y_{i+1} - \Delta_d^0 y_i}{x_{i+2} - x_i} = \frac{x_{i+2} - x_{i+1}}{x_{i+2} - x_i} = \frac{x_{i+1} - x_i}{x_{i+2} - x_i} = \frac{x_{i+2} - x_i}{x_{i+2} - x_i} = \frac{x_{i+1} - x_i}{x_{i+2} - x_i} = \frac{x_{i+2} - x_i}{x_{i+2} - x_i$$

Teorema: Seja a função y = f(x) definida pelos pontos (x_i, y_i) i = 0, 1, 2, ..., n, tal que $h = x_{i+1} - x_i$ para todo i.

$$\Delta_d^n y_i = \frac{\Delta^n y_i}{n!h^n}$$

$$\Delta_d y_i = \frac{y_{i+1} - y_i}{x_{i+1} - x_i} = \frac{y_{i+1} - y_i}{h} = \frac{\Delta y_i}{h} = \frac{\Delta y_i}{(1!)h}$$
(4)

Provar para
$$n = 2$$
:
$$\Delta_d^0 y_{i+2} - \Delta_d^0 y_{i+1} - \Delta_d^0 y_i = \frac{\Delta_d^0 y_{i+1} - \Delta_d^0 y_i}{x_{i+2} - x_i} = \frac{x_{i+2} - x_{i+1}}{x_{i+2} - x_i} = \frac{x_{i+2} - x_{i+1}}{x_{i+1} - x_i} = \frac{x_{i+2} - x_{i+1}}{x_{i+2} - x_i} = \frac{x_{i+2} - x_{i+1}}{x_{i+1} - x_i}$$

Teorema: Seja a função y = f(x) definida pelos pontos (x_i, y_i) i = 0, 1, 2, ..., n, tal que $h = x_{i+1} - x_i$ para todo i.

= 0, 1, 2, ...,
$$n$$
, tal que $h = x_{i+1}$ - x_i para t

$$\Delta_d^n y_i = \frac{\Delta^n y_i}{n! h^n}$$

$$\Delta_d y_i = \frac{y_{i+1} - y_i}{x_{i+1} - x_i} = \frac{y_{i+1} - y_i}{h} = \frac{\Delta y_i}{h} = \frac{\Delta y_i}{(1!)h}$$
(4)

Provar para
$$n = 2$$
:
$$\Delta_d^0 y_{i+2} - \Delta_d^0 y_{i+1} - \Delta_d^0 y_i = \frac{\Delta_d^0 y_{i+1} - \Delta_d^0 y_i}{x_{i+2} - x_i} = \frac{x_{i+2} - x_{i+1}}{x_{i+2} - x_i} = \frac{y_{i+2} - y_{i+1}}{x_{i+2} - x_i} - \frac{y_{i+1} - y_i}{x_{i+1} - x_i}$$

$$\frac{(y_{i+2} - y_{i+1}) - (y_{i+1} - y_i)}{x_{i+1} - y_i} = \frac{h}{a_{i+1} - a_{i+1}} = \frac{y_{i+2} - y_{i+1}}{x_{i+2} - x_i} - \frac{y_{i+1} - y_i}{x_{i+1} - x_i}$$

Teorema: Seja a função y = f(x) definida pelos pontos (x_i, y_i) i = 0, 1, 2, ..., n, tal que $h = x_{i+1} - x_i$ para todo i.

= 0, 1, 2, ..., *n*, tal que
$$h = x_{i+1}$$
- x_i para todo *i*

 $\Delta_d^n y_i = \frac{\Delta^n y_i}{n!h^n}$ Provar para n = 1:

$$\Delta_d y_i = \frac{y_{i+1} - y_i}{x_{i+1} - x_i} = \frac{y_{i+1} - y_i}{h} = \frac{\Delta y_i}{h} = \frac{\Delta y_i}{(1!)h}$$
(4)

Provar para
$$n = 2$$
:
$$\Delta_{d}^{0} y_{i+1} - \Delta_{d}^{0} y_{i} = \frac{\Delta_{d}^{0} y_{i+1} - \Delta_{d}^{0} y_{i}}{x_{i+2} - x_{i}} = \frac{\sum_{i+1}^{0} \Delta_{d}^{0} y_{i+1} - \Delta_{d}^{0} y_{i}}{x_{i+2} - x_{i}} = \frac{\sum_{i+1}^{0} - y_{i+1} - y_{i}}{x_{i+1} - x_{i}} = \frac{\sum_{i+2}^{0} - y_{i+1} - y_{i}}{x_{i+2} - x_{i}} = \frac{\sum_{i+2}^{0} - y_{i+1} - y_{i}}{x_{$$

(5)

Provar para n = 3:

$$\Delta_{d}^{3} y_{i} = \frac{\Delta_{d}^{2} y_{i+1} - \Delta_{d}^{2} y_{i}}{x_{i+3} - x_{i}} = \frac{\frac{\Delta_{d} y_{i+2} - \Delta_{d} y_{i+1}}{x_{i+3} - x_{i+1}} - \frac{\Delta_{d} y_{i+1} - \Delta_{d} y_{i}}{x_{i+2} - x_{i}}}{x_{i+3} - x_{i}}$$

$$\Delta_{d}^{3} y_{i} = \frac{\Delta_{d} y_{i+2} - \Delta_{d} y_{i+1} - (\Delta_{d} y_{i+1} - \Delta_{d} y_{i})}{x_{i+3} - x_{i}}$$

$$\Delta_{d} y_{i} = \frac{1}{x_{i+3} - x_{i}} \qquad x_{i+3} - x_{i}$$

$$\Delta_{d}^{3} y_{i} = \frac{\Delta_{d} y_{i+2} - \Delta_{d} y_{i+1} - (\Delta_{d} y_{i+1} - \Delta_{d} y_{i})}{2h3h}$$

$$\Delta_d^3 y_i = \frac{(\Delta_d^0 y_{i+3} - \Delta_d^0 y_{i+2}) - (\Delta_d^0 y_{i+2} - \Delta_d^0 y_{i+1}) - ((\Delta_d^0 y_{i+2} - \Delta_d^0 y_{i+1}) - (\Delta_d^0 y_{i+1}) - ($$

$$\Delta_d^3 y_i = \frac{(y_{i+3} - y_{i+2}) - (y_{i+2} - y_{i+1}) - ((y_{i+2} - y_{i+1}) - (y_{i+1} - y_i))}{6h^3}$$

$$\Delta_d^3 y_i = \frac{(\Delta y_{i+2} - \Delta y_{i+1}) - (\Delta y_{i+1} - \Delta y_i)}{6h^3} = \frac{\Delta^2 y_{i+1} - \Delta^2 y_i}{6h^3} = \frac{\Delta^3 y_i}{6h^3} = \frac{\Delta^3 y_i}{(3!)h^3}$$
(6)

FURG – IMEF – Prof. Tales Luiz Popiolel

Substituindo as eqs. (4), (5), (6), ... na eq. (3) obtém-se:

$$P_n(x) = y_0 + hz \left(\frac{\Delta y_0}{1!h}\right) + h^2 z(z-1) \left(\frac{\Delta^2 y_0}{2!h^2}\right) + h^3 z(z-1)(z-2) \left(\frac{\Delta^3 y_0}{3!h^3}\right) + \dots$$

FURG - IMEF - Prof. Tales Luiz Popiolek

Substituindo as eqs. (4), (5), (6), ... na eq. (3) obtém-se:

$$P_n(x) = y_0 + hz \left(\frac{\Delta y_0}{1!h}\right) + h^2 z(z-1) \left(\frac{\Delta^2 y_0}{2!h^2}\right) + h^3 z(z-1)(z-2) \left(\frac{\Delta^3 y_0}{3!h^3}\right) + \dots$$

simplificando obtém-se a Fórmula de Gregory-Newton:

 $P_n(x) = y_0 + z \frac{\Delta y_0}{1!} + z(z-1) \frac{\Delta^2 y_0}{2!} + z(z-1)(z-2) \frac{\Delta^3 y_0}{3!} + \dots + z(z-1) \dots (z-(n-1)) \frac{\Delta^n y_0}{n!}$

onde
$$z = \frac{x - x_0}{h}$$

1) Determinar o polinômio que interpola os pontos abaixo pelo método de Gregory-Newton:

X_i	0	1	2	3
y_i	1	2	5.	10

1) Determinar o polinômio que interpola os pontos abaixo pelo método de Gregory-Newton:

X_i	0	1	2	3
y_i	1	2	5	10

$$P_{3}(x) = \underbrace{y_{0} + z\Delta y_{0} + z(z-1)\frac{\Delta^{2}y_{0}}{2!} + z(z-1)(z-2)\frac{\Delta^{3}y_{0}}{3!}}_{z = \frac{x - x_{0}}{h}}$$

Com 4 pontos a interpolar espera-se um polinômio de terceira ordem.

1) Determinar o polinômio que interpola os pontos abaixo pelo método de Gregory-Newton:

X_i	0	1	2	3
y_i	1	2	5.	10

$$P_{3}(x) = \underbrace{y_{0} + z\Delta y_{0} + z(z-1)\frac{\Delta^{2}y_{0}}{2!} + z(z-1)(z-2)\frac{\Delta^{3}y_{0}}{3!}}_{z = \frac{x - x_{0}}{h}}$$

Para obter o polinômio necessita-se determinar o valor de z e os valores das diferenças finitas de primeira, segunda e terceira ordem.

1) Determinar o polinômio que interpola os pontos abaixo pelo método de Gregory-Newton:

X_i	0	1	2	3
y_i	1	2	5.	10

$$P_3(x) = y_0 + z\Delta y_0 + z(z-1)\frac{\Delta^2 y_0}{2!} + z(z-1)(z-2)\frac{\Delta^3 y_0}{3!}$$
$$z = \frac{x - x_0}{h}$$

Como
$$x_0 = 0$$
 e

$$h = x_{i+1} - x_i$$

1) Determinar o polinômio que interpola os pontos abaixo pelo método de Gregory-Newton:

X_i	0	1	2	3
y_i	1	2	5.	10

$$P_3(x) = y_0 + z\Delta y_0 + z(z-1)\frac{\Delta^2 y_0}{2!} + z(z-1)(z-2)\frac{\Delta^3 y_0}{3!}$$
$$z = \frac{x - x_0}{h}$$

Como $x_0 = 0$ e

$$h = x_{i+1} - x_i = 1$$

A diferença em dois pontos sucessivos dos dados da tabela é constante, igual a 1.

PRÓ

Exercícios

1) Determinar o polinômio que interpola os pontos abaixo pelo método de Gregory-Newton:

X_i	0	1	2	3
y_i	1	2	5	10

$$P_3(x) = y_0 + z\Delta y_0 + z(z-1)\frac{\Delta^2 y_0}{2!} + z(z-1)(z-2)\frac{\Delta^3 y_0}{3!}$$
$$z = \frac{x - x_0}{h}$$

Como $x_0 = 0$ e

$$h = x_{i+1} - x_i = 1$$

Substituindo $x_0 = 0$ e h = 1 em z obtém-se:

$$z = x$$

x_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$
0	1			
1	2			
2	5			
3	10			

x_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$
0	1			
		1		
1	2			
2	5			
3	10			

A diferença finita de primeira ordem de y_0 (Δy_0) é calculada pela expressão:

$$\Delta y_0 = y_1 - y_0$$

\mathcal{X}_{i}	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$
0	1			
		1		
1	2	/		
		3		
2	5			
3	10			

A diferença finita de primeira ordem de y_1 (Δy_1) é calculada pela expressão:

$$\Delta y_1 = y_2 - y_1$$

x_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$
0	1			
		1		
1	2			
		3		
2	5			
		5		
3	10			

A diferença finita de primeira ordem de y_2 (Δy_2) é calculada pela expressão:

$$\Delta y_2 = y_3 - y_2$$

x_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$
0	1			
		1		
1	2		2	
		3		
2	5			
		5		
3	10			

A diferença finita de segunda ordem de y_0 ($\Delta^2 y_0$) é calculada pela expressão:

$$\Delta^2 y_0 = \Delta y_1 - \Delta y_0$$

X_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$
0	1			
		1		
1	2		2	
		3		
2	5		2	
		5		
3	10			

A diferença finita de segunda ordem de y_1 ($\Delta^2 y_1$) é calculada pela expressão:

$$\Delta^2 y_1 = \Delta y_2 - \Delta y_1$$

x_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$
0	1			
		1		
1	2		2	
		3		0
2	5		2	
		5		
3	10			

A diferença finita de terceira ordem de y_0 ($\Delta^3 y_0$) é calculada pela expressão:

$$\Delta^3 y_1 = \Delta^2 y_1 - \Delta^2 y_0$$

x_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$
0	1			
		1		
1	2		2	
		3		0
2	5		2	
		5		
3	10			

X_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$
0	(1)			
1	2		(2)	
		3		(0)
2	5		2	
		5		
3	10			

$$P_3(x) = y_0 + z\Delta y_0 + z(z-1)\frac{\Delta^2 y_0}{2!} + z(z-1)(z-2)\frac{\Delta^3 y_0}{3!}$$

Note que, somente os dados da tabela marcados com um circulo e z = x, calculado anteriormente, são utilizados para obter o polinômio.

\mathcal{X}_{i}	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$
0	$\left \left(1 \right) \right $			
	((1)		
1	2		(2)	
		3)	(0)
2	5		2	
		5		
3	10			

$$P_3(x) = y_0 + z\Delta y_0 + z(z-1)\frac{\Delta^2 y_0}{2!} + z(z-1)(z-2)\frac{\Delta^3 y_0}{3!}$$

$$P_3(x) = 1 + x(1) + x(x-1)\frac{2}{2!} + x(x-1)(x-2)\frac{0}{3!}$$

X_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$
0	1			
		1		
1	2		2	
		3		0
2	5		2	
		5		
3	10			

$$P_3(x) = y_0 + z\Delta y_0 + z(z-1)\frac{\Delta^2 y_0}{2!} + z(z-1)(z-2)\frac{\Delta^3 y_0}{3!}$$

$$P_3(x) = 1 + x(1) + x(x-1)\frac{2}{2!} + x(x-1)(x-2)\frac{0}{3!}$$

$$P_3(x) = 1 + x^2$$

 \acute{E} o polinômio que melhor representa os pontos interpolados.

PRÓ

x_i	-1	0	1	2
y_i	-1	1	1.	5

X_i	-1	0	1	2
y_i	-1	1	1.	5

$$P_3(x) = y_0 + z\Delta y_0 + z(z-1)\frac{\Delta^2 y_0}{2!} + z(z-1)(z-2)\frac{\Delta^3 y_0}{3!}$$
$$z = \frac{x - x_0}{h}$$

X_i	-1	0	1	2
y_i	-1	1	1.	5

$$P_3(x) = y_0 + z\Delta y_0 + z(z-1)\frac{\Delta^2 y_0}{2!} + z(z-1)(z-2)\frac{\Delta^3 y_0}{3!}$$
$$z = \frac{x - x_0}{h}$$

$$Como x_0 = -1 e$$

$$h = x_{i+1} - x_i = 1$$

X_i	-1	0	1	2
y_i	-1	1	1.	5

$$P_3(x) = y_0 + z\Delta y_0 + z(z-1)\frac{\Delta^2 y_0}{2!} + z(z-1)(z-2)\frac{\Delta^3 y_0}{3!}$$
$$z = \frac{x - x_0}{h}$$

Como
$$x_0 = -1$$
 e
$$h = x_{i+1} - x_i = 1$$
logo $z = x + 1$

x_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$
-1	-1			
0	1			
1	1			
2	5			

Lembramos que você já sabe calcular, pois é semelhante ao exemplo anterior.

X_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$
-1	-1			
		2		
0	1			
1	1			
2	5			

\mathcal{X}_{i}	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$
-1	-1			
		2		
0	1			
		0		
1	1			
2	5			

X_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$
-1	-1			
		2		
0	1			
		0		
1	1			
		4		
2	5			

X_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$
-1	-1			
		2		
0	1		-2	
		0		
1	1			
		4		
2	5			

\mathcal{X}_{i}	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$
-1	-1			
		2		
0	1		-2	
		0		
1	1		4	
		4		
2	5			

\mathcal{X}_{i}	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$
-1	-1			
		2		
0	1		-2	
		0		6
1	1		4	
		4		
2	5			

		3		
x_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$
-1	(-1)			
		(2)		
0	1		(-2)	
		0		(6)
1	1		4	
		4		
2	5			

$$P_3(x) = y_0 + z\Delta y_0 + z(z-1)\frac{\Delta^2 y_0}{2!} + z(z-1)(z-2)\frac{\Delta^3 y_0}{3!}$$

Note que, somente os dados da tabela marcados com um circulo e z = x+1, calculado anteriormente, são utilizados para obter o polinômio.

x_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$
-1	(-1)			
		(2)		
0	1		(-2)	
		0		(6)
1	1		4	
		4		
2	5			

$$P_3(x) = y_0 + z\Delta y_0 + z(z-1)\frac{\Delta^2 y_0}{2!} + z(z-1)(z-2)\frac{\Delta^3 y_0}{3!}$$

$$P_3(x) = y_0 + z\Delta y_0 + z(z-1)\frac{\Delta^2 y_0}{2!} + z(z-1)(z-2)\frac{\Delta^3 y_0}{3!}$$

$$P_3(x) = -1 + (x+1)2 + (x+1)(x+1-1)\frac{(-2)}{2!} + (x+1)(x+1-1)(x+1-2)\frac{6}{3!}$$

		5		
\mathcal{X}_{i}	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$
-1	(-1)			
		(2)		
0	1		(-2)	
		0		(6)
1	1		4	
		4		
2	5			

$$P_3(x) = y_0 + z\Delta y_0 + z(z-1)\frac{\Delta^2 y_0}{2!} + z(z-1)(z-2)\frac{\Delta^3 y_0}{3!}$$

$$P_3(x) = -1 + (x+1)2 + (x+1)(x+1-1)\frac{(-2)}{2!} + (x+1)(x+1-1)(x+1-2)\frac{6}{3!}$$

$$P_3(x) = -1 + 2x + 2 - x^2 - x + x^3 - x$$

		5		
\mathcal{X}_{i}	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$
-1	(-1)			
		(2)		
0	1		(-2)	
		0		(6)
1	1		4	
		4		
2	5			

$$P_3(x) = y_0 + z\Delta y_0 + z(z-1)\frac{\Delta^2 y_0}{2!} + z(z-1)(z-2)\frac{\Delta^3 y_0}{3!}$$

$$P_3(x) = -1 + (x+1)2 + (x+1)(x+1-1)\frac{(-2)}{2!} + (x+1)(x+1-1)(x+1-2)\frac{6}{3!}$$

$$P_3(x) = -1 + 2x + 2 - x^2 - x + x^3 - x$$

 $P_3(x) = 1 - x^2 + x^3$

3) Determinar o polinômio que interpola os pontos abaixo pelo método de Gregory-Newton:

X_i	-2	1	4	7
y_i	13	-2	1	22

(Exercício complementar)

Resposta: $P_3 = 1 - 4x + x^2$

Observação: Era esperado um polinômio de terceira ordem, mas o polinômio que melhor representa os pontos é de segunda ordem.

Obrigado.

FURG - IMEF - Prof. Tales Luiz Popiolek